Loading…
Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold
We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is give...
Saved in:
Published in: | Differential equations 2017-12, Vol.53 (13), p.1715-1733 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63 |
container_end_page | 1733 |
container_issue | 13 |
container_start_page | 1715 |
container_title | Differential equations |
container_volume | 53 |
creator | Kruk, A. V. Malykh, A. E. Reitmann, V. |
description | We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds. |
doi_str_mv | 10.1134/S0012266117130031 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0012266117130031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0012266117130031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63</originalsourceid><addsrcrecordid>eNp9UN1KwzAUDqLgnD6Ad3mB6jlNm2aXOqcbTLyouy5pm2hGl4wkHQx8eFvnneDN-fn-OBxCbhHuEFl2XwJgmnKOWCADYHhGJshBJAwEOyeTkU5G_pJchbAFgFmB-YR8bfZ75emj620bqHaexk9Fl7IPrfNa0yezUzYYZ6m0LS2jl9Fo0wx1gJweULqyB-mNtJGWKv5ii4Pr-h9NeQxR7egYQJemq5WP9FVao13XXpMLLbugbn77lGyeF-_zZbJ-e1nNH9ZJkwoREw68VrXmwLRgxYznSshaCshBZnIYs7ppoECeNUWNuVZ5BrptBcdhL6TibErwlNt4F4JXutp7s5P-WCFU4_uqP-8bPOnJEwat_VC-2rre2-HMf0zfvVtzBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Kruk, A. V. ; Malykh, A. E. ; Reitmann, V.</creator><creatorcontrib>Kruk, A. V. ; Malykh, A. E. ; Reitmann, V.</creatorcontrib><description>We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266117130031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Control Theory ; Difference and Functional Equations ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Differential equations, 2017-12, Vol.53 (13), p.1715-1733</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63</citedby><cites>FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kruk, A. V.</creatorcontrib><creatorcontrib>Malykh, A. E.</creatorcontrib><creatorcontrib>Reitmann, V.</creatorcontrib><title>Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.</description><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UN1KwzAUDqLgnD6Ad3mB6jlNm2aXOqcbTLyouy5pm2hGl4wkHQx8eFvnneDN-fn-OBxCbhHuEFl2XwJgmnKOWCADYHhGJshBJAwEOyeTkU5G_pJchbAFgFmB-YR8bfZ75emj620bqHaexk9Fl7IPrfNa0yezUzYYZ6m0LS2jl9Fo0wx1gJweULqyB-mNtJGWKv5ii4Pr-h9NeQxR7egYQJemq5WP9FVao13XXpMLLbugbn77lGyeF-_zZbJ-e1nNH9ZJkwoREw68VrXmwLRgxYznSshaCshBZnIYs7ppoECeNUWNuVZ5BrptBcdhL6TibErwlNt4F4JXutp7s5P-WCFU4_uqP-8bPOnJEwat_VC-2rre2-HMf0zfvVtzBA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kruk, A. V.</creator><creator>Malykh, A. E.</creator><creator>Reitmann, V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold</title><author>Kruk, A. V. ; Malykh, A. E. ; Reitmann, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruk, A. V.</creatorcontrib><creatorcontrib>Malykh, A. E.</creatorcontrib><creatorcontrib>Reitmann, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruk, A. V.</au><au>Malykh, A. E.</au><au>Reitmann, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>53</volume><issue>13</issue><spage>1715</spage><epage>1733</epage><pages>1715-1733</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266117130031</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2017-12, Vol.53 (13), p.1715-1733 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0012266117130031 |
source | ABI/INFORM Global; Springer Nature |
subjects | Control Theory Difference and Functional Equations Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations |
title | Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20for%20the%20Hausdorff%20Dimension%20and%20Stratification%20of%20an%20Invariant%20Set%20of%20an%20Evolution%20System%20on%20a%20Hilbert%20Manifold&rft.jtitle=Differential%20equations&rft.au=Kruk,%20A.%20V.&rft.date=2017-12-01&rft.volume=53&rft.issue=13&rft.spage=1715&rft.epage=1733&rft.pages=1715-1733&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266117130031&rft_dat=%3Ccrossref_sprin%3E10_1134_S0012266117130031%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |