Loading…

Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold

We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is give...

Full description

Saved in:
Bibliographic Details
Published in:Differential equations 2017-12, Vol.53 (13), p.1715-1733
Main Authors: Kruk, A. V., Malykh, A. E., Reitmann, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63
cites cdi_FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63
container_end_page 1733
container_issue 13
container_start_page 1715
container_title Differential equations
container_volume 53
creator Kruk, A. V.
Malykh, A. E.
Reitmann, V.
description We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.
doi_str_mv 10.1134/S0012266117130031
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0012266117130031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0012266117130031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63</originalsourceid><addsrcrecordid>eNp9UN1KwzAUDqLgnD6Ad3mB6jlNm2aXOqcbTLyouy5pm2hGl4wkHQx8eFvnneDN-fn-OBxCbhHuEFl2XwJgmnKOWCADYHhGJshBJAwEOyeTkU5G_pJchbAFgFmB-YR8bfZ75emj620bqHaexk9Fl7IPrfNa0yezUzYYZ6m0LS2jl9Fo0wx1gJweULqyB-mNtJGWKv5ii4Pr-h9NeQxR7egYQJemq5WP9FVao13XXpMLLbugbn77lGyeF-_zZbJ-e1nNH9ZJkwoREw68VrXmwLRgxYznSshaCshBZnIYs7ppoECeNUWNuVZ5BrptBcdhL6TibErwlNt4F4JXutp7s5P-WCFU4_uqP-8bPOnJEwat_VC-2rre2-HMf0zfvVtzBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Kruk, A. V. ; Malykh, A. E. ; Reitmann, V.</creator><creatorcontrib>Kruk, A. V. ; Malykh, A. E. ; Reitmann, V.</creatorcontrib><description>We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266117130031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Control Theory ; Difference and Functional Equations ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Differential equations, 2017-12, Vol.53 (13), p.1715-1733</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63</citedby><cites>FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kruk, A. V.</creatorcontrib><creatorcontrib>Malykh, A. E.</creatorcontrib><creatorcontrib>Reitmann, V.</creatorcontrib><title>Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.</description><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UN1KwzAUDqLgnD6Ad3mB6jlNm2aXOqcbTLyouy5pm2hGl4wkHQx8eFvnneDN-fn-OBxCbhHuEFl2XwJgmnKOWCADYHhGJshBJAwEOyeTkU5G_pJchbAFgFmB-YR8bfZ75emj620bqHaexk9Fl7IPrfNa0yezUzYYZ6m0LS2jl9Fo0wx1gJweULqyB-mNtJGWKv5ii4Pr-h9NeQxR7egYQJemq5WP9FVao13XXpMLLbugbn77lGyeF-_zZbJ-e1nNH9ZJkwoREw68VrXmwLRgxYznSshaCshBZnIYs7ppoECeNUWNuVZ5BrptBcdhL6TibErwlNt4F4JXutp7s5P-WCFU4_uqP-8bPOnJEwat_VC-2rre2-HMf0zfvVtzBA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kruk, A. V.</creator><creator>Malykh, A. E.</creator><creator>Reitmann, V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold</title><author>Kruk, A. V. ; Malykh, A. E. ; Reitmann, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruk, A. V.</creatorcontrib><creatorcontrib>Malykh, A. E.</creatorcontrib><creatorcontrib>Reitmann, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruk, A. V.</au><au>Malykh, A. E.</au><au>Reitmann, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>53</volume><issue>13</issue><spage>1715</spage><epage>1733</epage><pages>1715-1733</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266117130031</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2017-12, Vol.53 (13), p.1715-1733
issn 0012-2661
1608-3083
language eng
recordid cdi_crossref_primary_10_1134_S0012266117130031
source ABI/INFORM Global; Springer Nature
subjects Control Theory
Difference and Functional Equations
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
title Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20for%20the%20Hausdorff%20Dimension%20and%20Stratification%20of%20an%20Invariant%20Set%20of%20an%20Evolution%20System%20on%20a%20Hilbert%20Manifold&rft.jtitle=Differential%20equations&rft.au=Kruk,%20A.%20V.&rft.date=2017-12-01&rft.volume=53&rft.issue=13&rft.spage=1715&rft.epage=1733&rft.pages=1715-1733&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266117130031&rft_dat=%3Ccrossref_sprin%3E10_1134_S0012266117130031%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-606bebf603f837965e8aba8050a4a8ab4bcc07164c7b15fe540fdd861c7b7ae63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true