Loading…

Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating

Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability ( P open ) of cardiac sarcoplasmic reticulum (SR) Ca 2+ -release channels (ryanodine-sensitive RyR channels) rising the SR Ca 2+ load in mammalian myocytes. Howev...

Full description

Saved in:
Bibliographic Details
Published in:JETP letters 2015-07, Vol.102 (1), p.62-68
Main Authors: Moskvin, A. S., Iaparov, B. I., Ryvkin, A. M., Solovyova, O. E., Markhasin, V. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663
cites cdi_FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663
container_end_page 68
container_issue 1
container_start_page 62
container_title JETP letters
container_volume 102
creator Moskvin, A. S.
Iaparov, B. I.
Ryvkin, A. M.
Solovyova, O. E.
Markhasin, V. S.
description Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability ( P open ) of cardiac sarcoplasmic reticulum (SR) Ca 2+ -release channels (ryanodine-sensitive RyR channels) rising the SR Ca 2+ load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of external thermal fluctuation forces (Gaussian–Markovian noise) and internal friction via the temperature stimulation/suppression of the open–close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in P open and mean open time without any significant effect on mean closed
doi_str_mv 10.1134/S002136401513010X
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S002136401513010X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S002136401513010X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vMJo7maTTpZT6AwUXKrgbMsnNOKVNhptU6Ns7teJGcHXhfPecxcfYNYgbAFndvghRgtSVAAVSgHg_YRMQc1Hoqp6dsskBFwd-zi5SWgsBUMvZhNFygzZTDIWNwUfamtzHYDY8kwnpN0i8i59IgecP5Bm3A5LJO0LucMDgMFjk0X9Ta8j1xnLamxBdH5ATWhxyJN6NW6G7ZGfebBJe_dwpe7tfvi4ei9Xzw9PiblVYqapczKVXUGsUaBXOXd1q6aDVTnvhdGm0bsGNqfDeaalcLZ1yVlktW9Sy1FpOGRx3LcWUCH0zUL81tG9ANAdpzR9pY6c8dtL4GzqkZh13NPpI_5S-AIrYclI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E. ; Markhasin, V. S.</creator><creatorcontrib>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E. ; Markhasin, V. S.</creatorcontrib><description>Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability ( P open ) of cardiac sarcoplasmic reticulum (SR) Ca 2+ -release channels (ryanodine-sensitive RyR channels) rising the SR Ca 2+ load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of external thermal fluctuation forces (Gaussian–Markovian noise) and internal friction via the temperature stimulation/suppression of the open–close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in P open and mean open time without any significant effect on mean closed</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S002136401513010X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Solid State Physics ; Spintronics</subject><ispartof>JETP letters, 2015-07, Vol.102 (1), p.62-68</ispartof><rights>Pleiades Publishing, Inc. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663</citedby><cites>FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moskvin, A. S.</creatorcontrib><creatorcontrib>Iaparov, B. I.</creatorcontrib><creatorcontrib>Ryvkin, A. M.</creatorcontrib><creatorcontrib>Solovyova, O. E.</creatorcontrib><creatorcontrib>Markhasin, V. S.</creatorcontrib><title>Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability ( P open ) of cardiac sarcoplasmic reticulum (SR) Ca 2+ -release channels (ryanodine-sensitive RyR channels) rising the SR Ca 2+ load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of external thermal fluctuation forces (Gaussian–Markovian noise) and internal friction via the temperature stimulation/suppression of the open–close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in P open and mean open time without any significant effect on mean closed</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vMJo7maTTpZT6AwUXKrgbMsnNOKVNhptU6Ns7teJGcHXhfPecxcfYNYgbAFndvghRgtSVAAVSgHg_YRMQc1Hoqp6dsskBFwd-zi5SWgsBUMvZhNFygzZTDIWNwUfamtzHYDY8kwnpN0i8i59IgecP5Bm3A5LJO0LucMDgMFjk0X9Ta8j1xnLamxBdH5ATWhxyJN6NW6G7ZGfebBJe_dwpe7tfvi4ei9Xzw9PiblVYqapczKVXUGsUaBXOXd1q6aDVTnvhdGm0bsGNqfDeaalcLZ1yVlktW9Sy1FpOGRx3LcWUCH0zUL81tG9ANAdpzR9pY6c8dtL4GzqkZh13NPpI_5S-AIrYclI</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Moskvin, A. S.</creator><creator>Iaparov, B. I.</creator><creator>Ryvkin, A. M.</creator><creator>Solovyova, O. E.</creator><creator>Markhasin, V. S.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating</title><author>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E. ; Markhasin, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskvin, A. S.</creatorcontrib><creatorcontrib>Iaparov, B. I.</creatorcontrib><creatorcontrib>Ryvkin, A. M.</creatorcontrib><creatorcontrib>Solovyova, O. E.</creatorcontrib><creatorcontrib>Markhasin, V. S.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskvin, A. S.</au><au>Iaparov, B. I.</au><au>Ryvkin, A. M.</au><au>Solovyova, O. E.</au><au>Markhasin, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>102</volume><issue>1</issue><spage>62</spage><epage>68</epage><pages>62-68</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability ( P open ) of cardiac sarcoplasmic reticulum (SR) Ca 2+ -release channels (ryanodine-sensitive RyR channels) rising the SR Ca 2+ load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of external thermal fluctuation forces (Gaussian–Markovian noise) and internal friction via the temperature stimulation/suppression of the open–close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in P open and mean open time without any significant effect on mean closed</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S002136401513010X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2015-07, Vol.102 (1), p.62-68
issn 0021-3640
1090-6487
language eng
recordid cdi_crossref_primary_10_1134_S002136401513010X
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Atomic
Biological and Medical Physics
Biophysics
Molecular
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum Information Technology
Solid State Physics
Spintronics
title Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-conformational%20transformations%20govern%20the%20temperature%20dependence%20of%20the%20cardiac%20ryanodine%20receptor%20gating&rft.jtitle=JETP%20letters&rft.au=Moskvin,%20A.%20S.&rft.date=2015-07-01&rft.volume=102&rft.issue=1&rft.spage=62&rft.epage=68&rft.pages=62-68&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S002136401513010X&rft_dat=%3Ccrossref_sprin%3E10_1134_S002136401513010X%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true