Loading…
Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating
Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability ( P open ) of cardiac sarcoplasmic reticulum (SR) Ca 2+ -release channels (ryanodine-sensitive RyR channels) rising the SR Ca 2+ load in mammalian myocytes. Howev...
Saved in:
Published in: | JETP letters 2015-07, Vol.102 (1), p.62-68 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663 |
container_end_page | 68 |
container_issue | 1 |
container_start_page | 62 |
container_title | JETP letters |
container_volume | 102 |
creator | Moskvin, A. S. Iaparov, B. I. Ryvkin, A. M. Solovyova, O. E. Markhasin, V. S. |
description | Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability (
P
open
) of cardiac sarcoplasmic reticulum (SR) Ca
2+
-release channels (ryanodine-sensitive RyR channels) rising the SR Ca
2+
load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of
external
thermal fluctuation forces (Gaussian–Markovian noise) and
internal
friction via the temperature stimulation/suppression of the open–close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in
P
open
and mean open time without any significant effect on mean closed |
doi_str_mv | 10.1134/S002136401513010X |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S002136401513010X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S002136401513010X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4vMJo7maTTpZT6AwUXKrgbMsnNOKVNhptU6Ns7teJGcHXhfPecxcfYNYgbAFndvghRgtSVAAVSgHg_YRMQc1Hoqp6dsskBFwd-zi5SWgsBUMvZhNFygzZTDIWNwUfamtzHYDY8kwnpN0i8i59IgecP5Bm3A5LJO0LucMDgMFjk0X9Ta8j1xnLamxBdH5ATWhxyJN6NW6G7ZGfebBJe_dwpe7tfvi4ei9Xzw9PiblVYqapczKVXUGsUaBXOXd1q6aDVTnvhdGm0bsGNqfDeaalcLZ1yVlktW9Sy1FpOGRx3LcWUCH0zUL81tG9ANAdpzR9pY6c8dtL4GzqkZh13NPpI_5S-AIrYclI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E. ; Markhasin, V. S.</creator><creatorcontrib>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E. ; Markhasin, V. S.</creatorcontrib><description>Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability (
P
open
) of cardiac sarcoplasmic reticulum (SR) Ca
2+
-release channels (ryanodine-sensitive RyR channels) rising the SR Ca
2+
load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of
external
thermal fluctuation forces (Gaussian–Markovian noise) and
internal
friction via the temperature stimulation/suppression of the open–close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in
P
open
and mean open time without any significant effect on mean closed</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S002136401513010X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Solid State Physics ; Spintronics</subject><ispartof>JETP letters, 2015-07, Vol.102 (1), p.62-68</ispartof><rights>Pleiades Publishing, Inc. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663</citedby><cites>FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moskvin, A. S.</creatorcontrib><creatorcontrib>Iaparov, B. I.</creatorcontrib><creatorcontrib>Ryvkin, A. M.</creatorcontrib><creatorcontrib>Solovyova, O. E.</creatorcontrib><creatorcontrib>Markhasin, V. S.</creatorcontrib><title>Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability (
P
open
) of cardiac sarcoplasmic reticulum (SR) Ca
2+
-release channels (ryanodine-sensitive RyR channels) rising the SR Ca
2+
load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of
external
thermal fluctuation forces (Gaussian–Markovian noise) and
internal
friction via the temperature stimulation/suppression of the open–close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in
P
open
and mean open time without any significant effect on mean closed</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4vMJo7maTTpZT6AwUXKrgbMsnNOKVNhptU6Ns7teJGcHXhfPecxcfYNYgbAFndvghRgtSVAAVSgHg_YRMQc1Hoqp6dsskBFwd-zi5SWgsBUMvZhNFygzZTDIWNwUfamtzHYDY8kwnpN0i8i59IgecP5Bm3A5LJO0LucMDgMFjk0X9Ta8j1xnLamxBdH5ATWhxyJN6NW6G7ZGfebBJe_dwpe7tfvi4ei9Xzw9PiblVYqapczKVXUGsUaBXOXd1q6aDVTnvhdGm0bsGNqfDeaalcLZ1yVlktW9Sy1FpOGRx3LcWUCH0zUL81tG9ANAdpzR9pY6c8dtL4GzqkZh13NPpI_5S-AIrYclI</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Moskvin, A. S.</creator><creator>Iaparov, B. I.</creator><creator>Ryvkin, A. M.</creator><creator>Solovyova, O. E.</creator><creator>Markhasin, V. S.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating</title><author>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E. ; Markhasin, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskvin, A. S.</creatorcontrib><creatorcontrib>Iaparov, B. I.</creatorcontrib><creatorcontrib>Ryvkin, A. M.</creatorcontrib><creatorcontrib>Solovyova, O. E.</creatorcontrib><creatorcontrib>Markhasin, V. S.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskvin, A. S.</au><au>Iaparov, B. I.</au><au>Ryvkin, A. M.</au><au>Solovyova, O. E.</au><au>Markhasin, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>102</volume><issue>1</issue><spage>62</spage><epage>68</epage><pages>62-68</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability (
P
open
) of cardiac sarcoplasmic reticulum (SR) Ca
2+
-release channels (ryanodine-sensitive RyR channels) rising the SR Ca
2+
load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of
external
thermal fluctuation forces (Gaussian–Markovian noise) and
internal
friction via the temperature stimulation/suppression of the open–close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in
P
open
and mean open time without any significant effect on mean closed</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S002136401513010X</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-3640 |
ispartof | JETP letters, 2015-07, Vol.102 (1), p.62-68 |
issn | 0021-3640 1090-6487 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S002136401513010X |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Atomic Biological and Medical Physics Biophysics Molecular Optical and Plasma Physics Particle and Nuclear Physics Physics Physics and Astronomy Quantum Information Technology Solid State Physics Spintronics |
title | Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-conformational%20transformations%20govern%20the%20temperature%20dependence%20of%20the%20cardiac%20ryanodine%20receptor%20gating&rft.jtitle=JETP%20letters&rft.au=Moskvin,%20A.%20S.&rft.date=2015-07-01&rft.volume=102&rft.issue=1&rft.spage=62&rft.epage=68&rft.pages=62-68&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S002136401513010X&rft_dat=%3Ccrossref_sprin%3E10_1134_S002136401513010X%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-93f5186e0ec5e9d8b63d1b6d6f0d62a66b1dd8b0ffd635d83d5dc5c63be632663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |