Loading…

On the division problem for a tempered distribution that depends holomorphically on a parameter

We give sufficient conditions ensuring a construction of solution to the equation with σ ∈ ℝ n and λ ∈ G ⊂ ℂ, where f ( λ ) and u ( λ ) are tempered distributions depending holomorphically on λ , while the polynomial P m ( σ ) may have real zeros.

Saved in:
Bibliographic Details
Published in:Siberian mathematical journal 2015-09, Vol.56 (5), p.901-911
Main Author: Pavlov, A. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-7a017db95e453fb47563cc94d4599f543920db8af458a83afaf5d10db8f9c593
cites cdi_FETCH-LOGICAL-c288t-7a017db95e453fb47563cc94d4599f543920db8af458a83afaf5d10db8f9c593
container_end_page 911
container_issue 5
container_start_page 901
container_title Siberian mathematical journal
container_volume 56
creator Pavlov, A. L.
description We give sufficient conditions ensuring a construction of solution to the equation with σ ∈ ℝ n and λ ∈ G ⊂ ℂ, where f ( λ ) and u ( λ ) are tempered distributions depending holomorphically on λ , while the polynomial P m ( σ ) may have real zeros.
doi_str_mv 10.1134/S0037446615050122
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0037446615050122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0037446615050122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7a017db95e453fb47563cc94d4599f543920db8af458a83afaf5d10db8f9c593</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaD-hOP-BWsiTbWpbQFwSyaPZmbEm1gm2ZkVLI39cm3RWyGphzzzBcQh45e-JcyOcvxkQpZVFwxRTjeX5FVlyVItN5wa7JasHZwm_JXYwHxjhjhV6RejfS1Flq_I-PPox0wtD0dqAuIAWa7DBZtGbmMaFvjmnJpA4SNXayo4m0C30YAk6db6HvT3TmQCdAGGyyeE9uHPTRPvzNNdm_ve43H9l29_65edlmbV5VKSuB8dI0WlmphGtkqQrRtloaqbR2SgqdM9NU4KSqoBLgwCnDl5XTrdJiTfj5bIshRrSuntAPgKeas3opqP5X0OzkZyfO2fHbYn0IRxznLy9Iv8w4aTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the division problem for a tempered distribution that depends holomorphically on a parameter</title><source>Springer Nature</source><creator>Pavlov, A. L.</creator><creatorcontrib>Pavlov, A. L.</creatorcontrib><description>We give sufficient conditions ensuring a construction of solution to the equation with σ ∈ ℝ n and λ ∈ G ⊂ ℂ, where f ( λ ) and u ( λ ) are tempered distributions depending holomorphically on λ , while the polynomial P m ( σ ) may have real zeros.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446615050122</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Siberian mathematical journal, 2015-09, Vol.56 (5), p.901-911</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-7a017db95e453fb47563cc94d4599f543920db8af458a83afaf5d10db8f9c593</citedby><cites>FETCH-LOGICAL-c288t-7a017db95e453fb47563cc94d4599f543920db8af458a83afaf5d10db8f9c593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pavlov, A. L.</creatorcontrib><title>On the division problem for a tempered distribution that depends holomorphically on a parameter</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We give sufficient conditions ensuring a construction of solution to the equation with σ ∈ ℝ n and λ ∈ G ⊂ ℂ, where f ( λ ) and u ( λ ) are tempered distributions depending holomorphically on λ , while the polynomial P m ( σ ) may have real zeros.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaD-hOP-BWsiTbWpbQFwSyaPZmbEm1gm2ZkVLI39cm3RWyGphzzzBcQh45e-JcyOcvxkQpZVFwxRTjeX5FVlyVItN5wa7JasHZwm_JXYwHxjhjhV6RejfS1Flq_I-PPox0wtD0dqAuIAWa7DBZtGbmMaFvjmnJpA4SNXayo4m0C30YAk6db6HvT3TmQCdAGGyyeE9uHPTRPvzNNdm_ve43H9l29_65edlmbV5VKSuB8dI0WlmphGtkqQrRtloaqbR2SgqdM9NU4KSqoBLgwCnDl5XTrdJiTfj5bIshRrSuntAPgKeas3opqP5X0OzkZyfO2fHbYn0IRxznLy9Iv8w4aTM</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Pavlov, A. L.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150901</creationdate><title>On the division problem for a tempered distribution that depends holomorphically on a parameter</title><author>Pavlov, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7a017db95e453fb47563cc94d4599f543920db8af458a83afaf5d10db8f9c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlov, A. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlov, A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the division problem for a tempered distribution that depends holomorphically on a parameter</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>56</volume><issue>5</issue><spage>901</spage><epage>911</epage><pages>901-911</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We give sufficient conditions ensuring a construction of solution to the equation with σ ∈ ℝ n and λ ∈ G ⊂ ℂ, where f ( λ ) and u ( λ ) are tempered distributions depending holomorphically on λ , while the polynomial P m ( σ ) may have real zeros.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446615050122</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2015-09, Vol.56 (5), p.901-911
issn 0037-4466
1573-9260
language eng
recordid cdi_crossref_primary_10_1134_S0037446615050122
source Springer Nature
subjects Mathematics
Mathematics and Statistics
title On the division problem for a tempered distribution that depends holomorphically on a parameter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20division%20problem%20for%20a%20tempered%20distribution%20that%20depends%20holomorphically%20on%20a%20parameter&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Pavlov,%20A.%20L.&rft.date=2015-09-01&rft.volume=56&rft.issue=5&rft.spage=901&rft.epage=911&rft.pages=901-911&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446615050122&rft_dat=%3Ccrossref_sprin%3E10_1134_S0037446615050122%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-7a017db95e453fb47563cc94d4599f543920db8af458a83afaf5d10db8f9c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true