Loading…

Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows

Unsteady-state Bénard–Marangoni convection in large-scale liquid flows with a linear temperature distribution at the layer boundaries has been investigated by the boundary element method. Two variants of boundary conditions are considered. In the case of temperature gradient components distributed a...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical foundations of chemical engineering 2016-03, Vol.50 (2), p.132-141
Main Authors: Aristov, S. N., Prosviryakov, E. Yu, Spevak, L. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2409-3016c8c1e58ee4eab03fc3afde8728fa40bc84d2a73e4ec30c17ecbf6f1da8613
cites cdi_FETCH-LOGICAL-c2409-3016c8c1e58ee4eab03fc3afde8728fa40bc84d2a73e4ec30c17ecbf6f1da8613
container_end_page 141
container_issue 2
container_start_page 132
container_title Theoretical foundations of chemical engineering
container_volume 50
creator Aristov, S. N.
Prosviryakov, E. Yu
Spevak, L. F.
description Unsteady-state Bénard–Marangoni convection in large-scale liquid flows with a linear temperature distribution at the layer boundaries has been investigated by the boundary element method. Two variants of boundary conditions are considered. In the case of temperature gradient components distributed at both boundaries, the boundary problem cannot be reduced to a one-dimensional one. The structure of layered convective flows has been studied. It has been demonstrated that the initial and boundary value problems considered here describe convective liquid counterflows and the formation of extremum (local and global) values of temperature fields. The existence of stagnant points (in which the liquid velocity is zero) inside the layer of the moving nonisothermal liquid has been discovered.
doi_str_mv 10.1134/S0040579516020019
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0040579516020019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0040579516020019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2409-3016c8c1e58ee4eab03fc3afde8728fa40bc84d2a73e4ec30c17ecbf6f1da8613</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAHa5QGAcu4mzhIo_qYgFdB05k3GVKrUrT1rUHXfgFJyDm3ASUsEOidWM5s0bjT4hziVcSKn05TOAhklRTmQOGYAsD8RoaE2qtJKHYrTH6Z4fixPmJQCUeV6OxHzuuSfb7FLubU_J9eeHt7H5ent_tNH6RfBtgsFvCfs2-KT1SWd3FKlJti1j2PAwwrBaR2Ju644S14VXPhVHznZMZ791LOa3Ny_T-3T2dPcwvZqlmGkoUwUyR4OSJoZIk61BOVTWNWSKzDiroUajm8wWasCoAGVBWLvcycaaXKqxkD93MQbmSK5ax3Zl466SUO1zqf7kMjjZj8PDrl9QrJZhE_3w5j_SNxOgaLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows</title><source>Springer Link</source><creator>Aristov, S. N. ; Prosviryakov, E. Yu ; Spevak, L. F.</creator><creatorcontrib>Aristov, S. N. ; Prosviryakov, E. Yu ; Spevak, L. F.</creatorcontrib><description>Unsteady-state Bénard–Marangoni convection in large-scale liquid flows with a linear temperature distribution at the layer boundaries has been investigated by the boundary element method. Two variants of boundary conditions are considered. In the case of temperature gradient components distributed at both boundaries, the boundary problem cannot be reduced to a one-dimensional one. The structure of layered convective flows has been studied. It has been demonstrated that the initial and boundary value problems considered here describe convective liquid counterflows and the formation of extremum (local and global) values of temperature fields. The existence of stagnant points (in which the liquid velocity is zero) inside the layer of the moving nonisothermal liquid has been discovered.</description><identifier>ISSN: 0040-5795</identifier><identifier>EISSN: 1608-3431</identifier><identifier>DOI: 10.1134/S0040579516020019</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Industrial Chemistry/Chemical Engineering</subject><ispartof>Theoretical foundations of chemical engineering, 2016-03, Vol.50 (2), p.132-141</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2409-3016c8c1e58ee4eab03fc3afde8728fa40bc84d2a73e4ec30c17ecbf6f1da8613</citedby><cites>FETCH-LOGICAL-c2409-3016c8c1e58ee4eab03fc3afde8728fa40bc84d2a73e4ec30c17ecbf6f1da8613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Aristov, S. N.</creatorcontrib><creatorcontrib>Prosviryakov, E. Yu</creatorcontrib><creatorcontrib>Spevak, L. F.</creatorcontrib><title>Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows</title><title>Theoretical foundations of chemical engineering</title><addtitle>Theor Found Chem Eng</addtitle><description>Unsteady-state Bénard–Marangoni convection in large-scale liquid flows with a linear temperature distribution at the layer boundaries has been investigated by the boundary element method. Two variants of boundary conditions are considered. In the case of temperature gradient components distributed at both boundaries, the boundary problem cannot be reduced to a one-dimensional one. The structure of layered convective flows has been studied. It has been demonstrated that the initial and boundary value problems considered here describe convective liquid counterflows and the formation of extremum (local and global) values of temperature fields. The existence of stagnant points (in which the liquid velocity is zero) inside the layer of the moving nonisothermal liquid has been discovered.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Industrial Chemistry/Chemical Engineering</subject><issn>0040-5795</issn><issn>1608-3431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAHa5QGAcu4mzhIo_qYgFdB05k3GVKrUrT1rUHXfgFJyDm3ASUsEOidWM5s0bjT4hziVcSKn05TOAhklRTmQOGYAsD8RoaE2qtJKHYrTH6Z4fixPmJQCUeV6OxHzuuSfb7FLubU_J9eeHt7H5ent_tNH6RfBtgsFvCfs2-KT1SWd3FKlJti1j2PAwwrBaR2Ju644S14VXPhVHznZMZ791LOa3Ny_T-3T2dPcwvZqlmGkoUwUyR4OSJoZIk61BOVTWNWSKzDiroUajm8wWasCoAGVBWLvcycaaXKqxkD93MQbmSK5ax3Zl466SUO1zqf7kMjjZj8PDrl9QrJZhE_3w5j_SNxOgaLs</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Aristov, S. N.</creator><creator>Prosviryakov, E. Yu</creator><creator>Spevak, L. F.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160301</creationdate><title>Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows</title><author>Aristov, S. N. ; Prosviryakov, E. Yu ; Spevak, L. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2409-3016c8c1e58ee4eab03fc3afde8728fa40bc84d2a73e4ec30c17ecbf6f1da8613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Industrial Chemistry/Chemical Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aristov, S. N.</creatorcontrib><creatorcontrib>Prosviryakov, E. Yu</creatorcontrib><creatorcontrib>Spevak, L. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical foundations of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aristov, S. N.</au><au>Prosviryakov, E. Yu</au><au>Spevak, L. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows</atitle><jtitle>Theoretical foundations of chemical engineering</jtitle><stitle>Theor Found Chem Eng</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>50</volume><issue>2</issue><spage>132</spage><epage>141</epage><pages>132-141</pages><issn>0040-5795</issn><eissn>1608-3431</eissn><abstract>Unsteady-state Bénard–Marangoni convection in large-scale liquid flows with a linear temperature distribution at the layer boundaries has been investigated by the boundary element method. Two variants of boundary conditions are considered. In the case of temperature gradient components distributed at both boundaries, the boundary problem cannot be reduced to a one-dimensional one. The structure of layered convective flows has been studied. It has been demonstrated that the initial and boundary value problems considered here describe convective liquid counterflows and the formation of extremum (local and global) values of temperature fields. The existence of stagnant points (in which the liquid velocity is zero) inside the layer of the moving nonisothermal liquid has been discovered.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040579516020019</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5795
ispartof Theoretical foundations of chemical engineering, 2016-03, Vol.50 (2), p.132-141
issn 0040-5795
1608-3431
language eng
recordid cdi_crossref_primary_10_1134_S0040579516020019
source Springer Link
subjects Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
title Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady-state%20B%C3%A9nard%E2%80%93Marangoni%20convection%20in%20layered%20viscous%20incompressible%20flows&rft.jtitle=Theoretical%20foundations%20of%20chemical%20engineering&rft.au=Aristov,%20S.%20N.&rft.date=2016-03-01&rft.volume=50&rft.issue=2&rft.spage=132&rft.epage=141&rft.pages=132-141&rft.issn=0040-5795&rft.eissn=1608-3431&rft_id=info:doi/10.1134/S0040579516020019&rft_dat=%3Ccrossref_sprin%3E10_1134_S0040579516020019%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2409-3016c8c1e58ee4eab03fc3afde8728fa40bc84d2a73e4ec30c17ecbf6f1da8613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true