Loading…

Barley leaf antioxidant system under photooxidative stress induced by Rose Bengal

The effects of photooxidative stress induced in green barley (Hordeum vulgare L.) leaves by xanthene dye Rose Bengal (RB) on the content of low-molecular antioxidants and the activity of antioxidant enzymes were studied. During illumination (24 h, 160 mol quanta/(m² s)) of the leaves preincubated in...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of plant physiology 2009-05, Vol.56 (3), p.316-322
Main Authors: Kozel, N. V, Shalygo, N. V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of photooxidative stress induced in green barley (Hordeum vulgare L.) leaves by xanthene dye Rose Bengal (RB) on the content of low-molecular antioxidants and the activity of antioxidant enzymes were studied. During illumination (24 h, 160 mol quanta/(m² s)) of the leaves preincubated in darkness on 10 and 100 M RB, ROS accumulated, and their level increased along with RB concentration and duration of illumination. Under these conditions, the content of reduced ascorbate and reduced glutathione (GSH) increased, the level of -and -tocopherol decreased, and the activity of ascorbate peroxidase, the enzyme participating in H₂O₂ degradation, increased. At the same time, the activity of catalase, also participating in H₂O₂ detoxification, decreased, which may be due to the enzyme inhibition during the photochemical stress. In the illuminated treated leaves, superoxide dismutase (SOD), the enzyme destroying the superoxide anion radicals, was activated. The cytosolic SOD isoform was the first to be activated and chloroplastic isoforms followed. It is supposed that photodynamic processes induced by RB in barley leaves are initiated in the cytosol. The activity of glutathione reductase, participating in glutathione oxidized form reduction, did not change at first and grew only after continuous illumination. Thus, the increase in the GSH level, which we have revealed on the initial stage of photooxidative stress development, was due to its synthesis de novo. In addition, under photooxidative stress induced by the sensitizer RB, the level of tocopherol reduced, whereas the amount of other low-molecular antioxidants increased. The exhaustion of the tocopherol pool, in its turn, could limit the resistance of barley leaves to the photooxidative stress.
ISSN:1021-4437
1608-3407
DOI:10.1134/S1021443709030030