Loading…

Creation of the set of kinetic equations for a nonideal gas near critical temperatures

In this article, the derivation of the Boltzmann equation from BBKIY of the chain is generalized for the case when the intermolecular interaction potential has both repulsive and attractive components. In this case, the application of the Bogolyubov method leads to situation when the term taking int...

Full description

Saved in:
Bibliographic Details
Published in:Doklady. a journal of the Russian Academy of Sciences. Physics 2015, Vol.60 (1), p.19-23
Main Authors: Bishaev, A. M., Rykov, V. A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 23
container_issue 1
container_start_page 19
container_title Doklady. a journal of the Russian Academy of Sciences. Physics
container_volume 60
creator Bishaev, A. M.
Rykov, V. A.
description In this article, the derivation of the Boltzmann equation from BBKIY of the chain is generalized for the case when the intermolecular interaction potential has both repulsive and attractive components. In this case, the application of the Bogolyubov method leads to situation when the term taking into account the transfer of molecules from the region where the hypothesis of the molecular chaos occurs into the region where molecules are arranged in a bound state is added to the usual collision integral. A two-particle distribution function of molecules in the bound state is assumed to be quasi-equilibrium with parameters depending on the variables that characterize the Boltzmann gas. Kinetic equations are written for these parameters performing the corresponding averaging over the region of bound states. Thus, this resulted in a closed set of kinetic equations describing nonideal gas. After introducing the corresponding macroparameters, all conservation laws and their consequences invariant relative to the Galileo transform follow from the corresponding set. The equation of state derived for such gas resembles the van der Waals equation by form. When considering the relaxation problem, the H-theorem is proven.
doi_str_mv 10.1134/S1028335815010048
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1028335815010048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1028335815010048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-d99116db0eb4e3dff50a83c8fad58f3ee60f5d938aadc10ffedef848cb8470f13</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AoHdOAnOEVX8VKrEgZ9r5Ni7JaV1iu0eeHtcyg2J0472m1mtRohLhCtEVV0_I5RaqVpjDQhQ6SMxwbopi6YFdZx1xsWen4qzGFcA0CqFE_E2C2TSMHo5skzvJCOlvfwYPKXBSvrc_eAoeQzSSD_6wZFZy6WJ0pMJ0oYhG_Mm0WZLwaRdoHguTtisI138zql4vb97mT0Wi6eH-ex2UdiyglS4tkVsXA_UV6Qccw1GK6vZuFqzImqAa9cqbYyzCMzkiHWlba-rG2BUU4GHuzaMMQbibhuGjQlfHUK3L6b7U0zOlIdMzF6_pNCtxl3w-c1_Qt_59Wbe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Creation of the set of kinetic equations for a nonideal gas near critical temperatures</title><source>Springer Nature</source><creator>Bishaev, A. M. ; Rykov, V. A.</creator><creatorcontrib>Bishaev, A. M. ; Rykov, V. A.</creatorcontrib><description>In this article, the derivation of the Boltzmann equation from BBKIY of the chain is generalized for the case when the intermolecular interaction potential has both repulsive and attractive components. In this case, the application of the Bogolyubov method leads to situation when the term taking into account the transfer of molecules from the region where the hypothesis of the molecular chaos occurs into the region where molecules are arranged in a bound state is added to the usual collision integral. A two-particle distribution function of molecules in the bound state is assumed to be quasi-equilibrium with parameters depending on the variables that characterize the Boltzmann gas. Kinetic equations are written for these parameters performing the corresponding averaging over the region of bound states. Thus, this resulted in a closed set of kinetic equations describing nonideal gas. After introducing the corresponding macroparameters, all conservation laws and their consequences invariant relative to the Galileo transform follow from the corresponding set. The equation of state derived for such gas resembles the van der Waals equation by form. When considering the relaxation problem, the H-theorem is proven.</description><identifier>ISSN: 1028-3358</identifier><identifier>EISSN: 1562-6903</identifier><identifier>DOI: 10.1134/S1028335815010048</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical Mechanics ; Mathematical and Computational Physics ; Mechanics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Doklady. a journal of the Russian Academy of Sciences. Physics, 2015, Vol.60 (1), p.19-23</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bishaev, A. M.</creatorcontrib><creatorcontrib>Rykov, V. A.</creatorcontrib><title>Creation of the set of kinetic equations for a nonideal gas near critical temperatures</title><title>Doklady. a journal of the Russian Academy of Sciences. Physics</title><addtitle>Dokl. Phys</addtitle><description>In this article, the derivation of the Boltzmann equation from BBKIY of the chain is generalized for the case when the intermolecular interaction potential has both repulsive and attractive components. In this case, the application of the Bogolyubov method leads to situation when the term taking into account the transfer of molecules from the region where the hypothesis of the molecular chaos occurs into the region where molecules are arranged in a bound state is added to the usual collision integral. A two-particle distribution function of molecules in the bound state is assumed to be quasi-equilibrium with parameters depending on the variables that characterize the Boltzmann gas. Kinetic equations are written for these parameters performing the corresponding averaging over the region of bound states. Thus, this resulted in a closed set of kinetic equations describing nonideal gas. After introducing the corresponding macroparameters, all conservation laws and their consequences invariant relative to the Galileo transform follow from the corresponding set. The equation of state derived for such gas resembles the van der Waals equation by form. When considering the relaxation problem, the H-theorem is proven.</description><subject>Classical Mechanics</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1028-3358</issn><issn>1562-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AoHdOAnOEVX8VKrEgZ9r5Ni7JaV1iu0eeHtcyg2J0472m1mtRohLhCtEVV0_I5RaqVpjDQhQ6SMxwbopi6YFdZx1xsWen4qzGFcA0CqFE_E2C2TSMHo5skzvJCOlvfwYPKXBSvrc_eAoeQzSSD_6wZFZy6WJ0pMJ0oYhG_Mm0WZLwaRdoHguTtisI138zql4vb97mT0Wi6eH-ex2UdiyglS4tkVsXA_UV6Qccw1GK6vZuFqzImqAa9cqbYyzCMzkiHWlba-rG2BUU4GHuzaMMQbibhuGjQlfHUK3L6b7U0zOlIdMzF6_pNCtxl3w-c1_Qt_59Wbe</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Bishaev, A. M.</creator><creator>Rykov, V. A.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Creation of the set of kinetic equations for a nonideal gas near critical temperatures</title><author>Bishaev, A. M. ; Rykov, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-d99116db0eb4e3dff50a83c8fad58f3ee60f5d938aadc10ffedef848cb8470f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical Mechanics</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishaev, A. M.</creatorcontrib><creatorcontrib>Rykov, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishaev, A. M.</au><au>Rykov, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation of the set of kinetic equations for a nonideal gas near critical temperatures</atitle><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle><stitle>Dokl. Phys</stitle><date>2015</date><risdate>2015</risdate><volume>60</volume><issue>1</issue><spage>19</spage><epage>23</epage><pages>19-23</pages><issn>1028-3358</issn><eissn>1562-6903</eissn><abstract>In this article, the derivation of the Boltzmann equation from BBKIY of the chain is generalized for the case when the intermolecular interaction potential has both repulsive and attractive components. In this case, the application of the Bogolyubov method leads to situation when the term taking into account the transfer of molecules from the region where the hypothesis of the molecular chaos occurs into the region where molecules are arranged in a bound state is added to the usual collision integral. A two-particle distribution function of molecules in the bound state is assumed to be quasi-equilibrium with parameters depending on the variables that characterize the Boltzmann gas. Kinetic equations are written for these parameters performing the corresponding averaging over the region of bound states. Thus, this resulted in a closed set of kinetic equations describing nonideal gas. After introducing the corresponding macroparameters, all conservation laws and their consequences invariant relative to the Galileo transform follow from the corresponding set. The equation of state derived for such gas resembles the van der Waals equation by form. When considering the relaxation problem, the H-theorem is proven.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028335815010048</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1028-3358
ispartof Doklady. a journal of the Russian Academy of Sciences. Physics, 2015, Vol.60 (1), p.19-23
issn 1028-3358
1562-6903
language eng
recordid cdi_crossref_primary_10_1134_S1028335815010048
source Springer Nature
subjects Classical Mechanics
Mathematical and Computational Physics
Mechanics
Physics
Physics and Astronomy
Theoretical
title Creation of the set of kinetic equations for a nonideal gas near critical temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20of%20the%20set%20of%20kinetic%20equations%20for%20a%20nonideal%20gas%20near%20critical%20temperatures&rft.jtitle=Doklady.%20a%20journal%20of%20the%20Russian%20Academy%20of%20Sciences.%20Physics&rft.au=Bishaev,%20A.%20M.&rft.date=2015&rft.volume=60&rft.issue=1&rft.spage=19&rft.epage=23&rft.pages=19-23&rft.issn=1028-3358&rft.eissn=1562-6903&rft_id=info:doi/10.1134/S1028335815010048&rft_dat=%3Ccrossref_sprin%3E10_1134_S1028335815010048%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-d99116db0eb4e3dff50a83c8fad58f3ee60f5d938aadc10ffedef848cb8470f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true