Loading…

On the origin of avian flight: Compromise and system approaches

Based on evolutionary morphological analysis of the fore and hind limbs of extinct and extant birds, a new compromise hypothesis of the origin of flight in birds and theropod dinosaurs is proposed. The bipedalism and anisodactylous foot suitable for various functions were key adaptations for the dev...

Full description

Saved in:
Bibliographic Details
Published in:Biology bulletin of the Russian Academy of Sciences 2008-02, Vol.35 (1), p.1-11
Main Authors: Kurochkin, E. N., Bogdanovich, I. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on evolutionary morphological analysis of the fore and hind limbs of extinct and extant birds, a new compromise hypothesis of the origin of flight in birds and theropod dinosaurs is proposed. The bipedalism and anisodactylous foot suitable for various functions were key adaptations for the development of flight. The bipedalism freed forelimbs from the supporting function and promoted transformation into wings, as animals moved from one tree branch to another and descended from trees. At the initial stage, the strong hind limbs provided the opportunity to climb and leap onto trees, bushes, or eminence, while the anisodactylous foot provided a firm support on both dry land and trees. The support provided by this foot allowed the reduction of the tail, which was initially composed of a long row of vertebrae. Thus, a stage of gliding flight was not necessarily passed by early birds. In the other lineages of feathered creatures, functional changes in forelimbs that resulted in the formation of wings developed in parallel and followed almost the same scenario.
ISSN:1062-3590
1608-3059
DOI:10.1134/S1062359008010019