Loading…
From Spin Glasses to Learning of Neural Networks
— The conceptual basics of spin glass theory are reviewed. A description of the mathematical apparatus developed for spin glasses and the model of the restricted Boltzmann machine (RBM) is presented. Optimization of the RBM learning algorithm using nongradient methods is explored. A method to extrac...
Saved in:
Published in: | Physics of particles and nuclei 2022-08, Vol.53 (4), p.834-847 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c170t-a99c920c1e143180601a17bd3404efb0b128f6add07aab237798e2b1896c35753 |
container_end_page | 847 |
container_issue | 4 |
container_start_page | 834 |
container_title | Physics of particles and nuclei |
container_volume | 53 |
creator | Perepelkin, E. E. Sadovnikov, B. I. Inozemtseva, N. G. Rudamenko, R. A. Tarelkin, A. A. Sysoev, P. N. Polyakova, R. V. Sadovnikova, M. B. |
description | —
The conceptual basics of spin glass theory are reviewed. A description of the mathematical apparatus developed for spin glasses and the model of the restricted Boltzmann machine (RBM) is presented. Optimization of the RBM learning algorithm using nongradient methods is explored. A method to extract the learning algorithm hyperparameter, temperature, has been described and used. Critical phenomena in the RBM—entropy crisis, and difference between the temperatures of the learning sample creation and processing—are studied. |
doi_str_mv | 10.1134/S1063779622040128 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1063779622040128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063779622040128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-a99c920c1e143180601a17bd3404efb0b128f6add07aab237798e2b1896c35753</originalsourceid><addsrcrecordid>eNp9j1FLwzAUhYMoOKc_wLf8geq9SdMkjzLcHBR92PZc0jYZnV0zkg7x35sy3wSfzoVzvss5hDwiPCHy_HmDUHApdcEY5IBMXZEZCo6ZEkJfpzvZ2eTfkrsYDwCIKNSMwDL4I92cuoGuehOjjXT0tLQmDN2wp97Rd3sOpk8yfvnwGe_JjTN9tA-_Oie75et28ZaVH6v14qXMGpQwZkbrRjNo0GLOUUEBaFDWLc8ht66GOlV0hWlbkMbUbKquLKtR6aLhQgo-J3j52wQfY7CuOoXuaMJ3hVBNk6s_kxPDLkxM2WFvQ3Xw5zCkmv9AP3FOVjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From Spin Glasses to Learning of Neural Networks</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Perepelkin, E. E. ; Sadovnikov, B. I. ; Inozemtseva, N. G. ; Rudamenko, R. A. ; Tarelkin, A. A. ; Sysoev, P. N. ; Polyakova, R. V. ; Sadovnikova, M. B.</creator><creatorcontrib>Perepelkin, E. E. ; Sadovnikov, B. I. ; Inozemtseva, N. G. ; Rudamenko, R. A. ; Tarelkin, A. A. ; Sysoev, P. N. ; Polyakova, R. V. ; Sadovnikova, M. B.</creatorcontrib><description>—
The conceptual basics of spin glass theory are reviewed. A description of the mathematical apparatus developed for spin glasses and the model of the restricted Boltzmann machine (RBM) is presented. Optimization of the RBM learning algorithm using nongradient methods is explored. A method to extract the learning algorithm hyperparameter, temperature, has been described and used. Critical phenomena in the RBM—entropy crisis, and difference between the temperatures of the learning sample creation and processing—are studied.</description><identifier>ISSN: 1063-7796</identifier><identifier>EISSN: 1531-8559</identifier><identifier>DOI: 10.1134/S1063779622040128</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>Physics of particles and nuclei, 2022-08, Vol.53 (4), p.834-847</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-7796, Physics of Particles and Nuclei, 2022, Vol. 53, No. 4, pp. 834–847. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2022, Vol. 53, No. 4.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-a99c920c1e143180601a17bd3404efb0b128f6add07aab237798e2b1896c35753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Perepelkin, E. E.</creatorcontrib><creatorcontrib>Sadovnikov, B. I.</creatorcontrib><creatorcontrib>Inozemtseva, N. G.</creatorcontrib><creatorcontrib>Rudamenko, R. A.</creatorcontrib><creatorcontrib>Tarelkin, A. A.</creatorcontrib><creatorcontrib>Sysoev, P. N.</creatorcontrib><creatorcontrib>Polyakova, R. V.</creatorcontrib><creatorcontrib>Sadovnikova, M. B.</creatorcontrib><title>From Spin Glasses to Learning of Neural Networks</title><title>Physics of particles and nuclei</title><addtitle>Phys. Part. Nuclei</addtitle><description>—
The conceptual basics of spin glass theory are reviewed. A description of the mathematical apparatus developed for spin glasses and the model of the restricted Boltzmann machine (RBM) is presented. Optimization of the RBM learning algorithm using nongradient methods is explored. A method to extract the learning algorithm hyperparameter, temperature, has been described and used. Critical phenomena in the RBM—entropy crisis, and difference between the temperatures of the learning sample creation and processing—are studied.</description><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>1063-7796</issn><issn>1531-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j1FLwzAUhYMoOKc_wLf8geq9SdMkjzLcHBR92PZc0jYZnV0zkg7x35sy3wSfzoVzvss5hDwiPCHy_HmDUHApdcEY5IBMXZEZCo6ZEkJfpzvZ2eTfkrsYDwCIKNSMwDL4I92cuoGuehOjjXT0tLQmDN2wp97Rd3sOpk8yfvnwGe_JjTN9tA-_Oie75et28ZaVH6v14qXMGpQwZkbrRjNo0GLOUUEBaFDWLc8ht66GOlV0hWlbkMbUbKquLKtR6aLhQgo-J3j52wQfY7CuOoXuaMJ3hVBNk6s_kxPDLkxM2WFvQ3Xw5zCkmv9AP3FOVjI</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Perepelkin, E. E.</creator><creator>Sadovnikov, B. I.</creator><creator>Inozemtseva, N. G.</creator><creator>Rudamenko, R. A.</creator><creator>Tarelkin, A. A.</creator><creator>Sysoev, P. N.</creator><creator>Polyakova, R. V.</creator><creator>Sadovnikova, M. B.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>From Spin Glasses to Learning of Neural Networks</title><author>Perepelkin, E. E. ; Sadovnikov, B. I. ; Inozemtseva, N. G. ; Rudamenko, R. A. ; Tarelkin, A. A. ; Sysoev, P. N. ; Polyakova, R. V. ; Sadovnikova, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-a99c920c1e143180601a17bd3404efb0b128f6add07aab237798e2b1896c35753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perepelkin, E. E.</creatorcontrib><creatorcontrib>Sadovnikov, B. I.</creatorcontrib><creatorcontrib>Inozemtseva, N. G.</creatorcontrib><creatorcontrib>Rudamenko, R. A.</creatorcontrib><creatorcontrib>Tarelkin, A. A.</creatorcontrib><creatorcontrib>Sysoev, P. N.</creatorcontrib><creatorcontrib>Polyakova, R. V.</creatorcontrib><creatorcontrib>Sadovnikova, M. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of particles and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perepelkin, E. E.</au><au>Sadovnikov, B. I.</au><au>Inozemtseva, N. G.</au><au>Rudamenko, R. A.</au><au>Tarelkin, A. A.</au><au>Sysoev, P. N.</au><au>Polyakova, R. V.</au><au>Sadovnikova, M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Spin Glasses to Learning of Neural Networks</atitle><jtitle>Physics of particles and nuclei</jtitle><stitle>Phys. Part. Nuclei</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>53</volume><issue>4</issue><spage>834</spage><epage>847</epage><pages>834-847</pages><issn>1063-7796</issn><eissn>1531-8559</eissn><abstract>—
The conceptual basics of spin glass theory are reviewed. A description of the mathematical apparatus developed for spin glasses and the model of the restricted Boltzmann machine (RBM) is presented. Optimization of the RBM learning algorithm using nongradient methods is explored. A method to extract the learning algorithm hyperparameter, temperature, has been described and used. Critical phenomena in the RBM—entropy crisis, and difference between the temperatures of the learning sample creation and processing—are studied.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063779622040128</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7796 |
ispartof | Physics of particles and nuclei, 2022-08, Vol.53 (4), p.834-847 |
issn | 1063-7796 1531-8559 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1063779622040128 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Particle and Nuclear Physics Physics Physics and Astronomy |
title | From Spin Glasses to Learning of Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Spin%20Glasses%20to%20Learning%20of%20Neural%20Networks&rft.jtitle=Physics%20of%20particles%20and%20nuclei&rft.au=Perepelkin,%20E.%20E.&rft.date=2022-08-01&rft.volume=53&rft.issue=4&rft.spage=834&rft.epage=847&rft.pages=834-847&rft.issn=1063-7796&rft.eissn=1531-8559&rft_id=info:doi/10.1134/S1063779622040128&rft_dat=%3Ccrossref_sprin%3E10_1134_S1063779622040128%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-a99c920c1e143180601a17bd3404efb0b128f6add07aab237798e2b1896c35753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |