Loading…

Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem

The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We just...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied and industrial mathematics 2021-02, Vol.15 (1), p.129-140
Main Authors: Rudoy, E. M., Itou, H., Lazarev, N. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3
cites cdi_FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3
container_end_page 140
container_issue 1
container_start_page 129
container_title Journal of applied and industrial mathematics
container_volume 15
creator Rudoy, E. M.
Itou, H.
Lazarev, N. P.
description The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.
doi_str_mv 10.1134/S1990478921010117
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1990478921010117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1990478921010117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3</originalsourceid><addsrcrecordid>eNp9kN9KwzAUxoMoOOYewLu8QDUnSZv0co6pk4nC5nXJ0tRFu6Qk7cXe3pQNbwQ5F-fv7_DxIXQL5A6A8fsNlCXhQpYUSAoQF2gyjjIuSnH5W8vyGs1itDvCgBasKOgEfc_j8dD1vrcavwyxt43VqrfeYd_gfm_wq69NG8duu7cOr5xuh5j2EadOObxsVRzhB18fx9HIzF1vu1Y5gzd7owJ-D37XmsMNumpUG83snKfo43G5XTxn67en1WK-znTSJTK2q4lsaEEkL2pjtCSU54IrkQMFqblRYCijEnLNBOEsJ5pIZoRgShYlV2yK4PRXBx9jME3VBXtQ4VgBqUbDqj-GJYaemJhu3acJ1Zcfgksy_4F-AHPqa9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem</title><source>Springer Link</source><creator>Rudoy, E. M. ; Itou, H. ; Lazarev, N. P.</creator><creatorcontrib>Rudoy, E. M. ; Itou, H. ; Lazarev, N. P.</creatorcontrib><description>The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478921010117</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of applied and industrial mathematics, 2021-02, Vol.15 (1), p.129-140</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3</citedby><cites>FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Rudoy, E. M.</creatorcontrib><creatorcontrib>Itou, H.</creatorcontrib><creatorcontrib>Lazarev, N. P.</creatorcontrib><title>Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kN9KwzAUxoMoOOYewLu8QDUnSZv0co6pk4nC5nXJ0tRFu6Qk7cXe3pQNbwQ5F-fv7_DxIXQL5A6A8fsNlCXhQpYUSAoQF2gyjjIuSnH5W8vyGs1itDvCgBasKOgEfc_j8dD1vrcavwyxt43VqrfeYd_gfm_wq69NG8duu7cOr5xuh5j2EadOObxsVRzhB18fx9HIzF1vu1Y5gzd7owJ-D37XmsMNumpUG83snKfo43G5XTxn67en1WK-znTSJTK2q4lsaEEkL2pjtCSU54IrkQMFqblRYCijEnLNBOEsJ5pIZoRgShYlV2yK4PRXBx9jME3VBXtQ4VgBqUbDqj-GJYaemJhu3acJ1Zcfgksy_4F-AHPqa9Y</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Rudoy, E. M.</creator><creator>Itou, H.</creator><creator>Lazarev, N. P.</creator><general>Pleiades Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem</title><author>Rudoy, E. M. ; Itou, H. ; Lazarev, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudoy, E. M.</creatorcontrib><creatorcontrib>Itou, H.</creatorcontrib><creatorcontrib>Lazarev, N. P.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudoy, E. M.</au><au>Itou, H.</au><au>Lazarev, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>129</spage><epage>140</epage><pages>129-140</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478921010117</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2021-02, Vol.15 (1), p.129-140
issn 1990-4789
1990-4797
language eng
recordid cdi_crossref_primary_10_1134_S1990478921010117
source Springer Link
subjects Mathematics
Mathematics and Statistics
title Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Justification%20of%20the%20Models%20of%20Thin%20Inclusions%20in%20an%20Elastic%20Body%20in%20the%20Antiplane%20Shear%20Problem&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Rudoy,%20E.%20M.&rft.date=2021-02-01&rft.volume=15&rft.issue=1&rft.spage=129&rft.epage=140&rft.pages=129-140&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478921010117&rft_dat=%3Ccrossref_sprin%3E10_1134_S1990478921010117%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true