Loading…
Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem
The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We just...
Saved in:
Published in: | Journal of applied and industrial mathematics 2021-02, Vol.15 (1), p.129-140 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3 |
container_end_page | 140 |
container_issue | 1 |
container_start_page | 129 |
container_title | Journal of applied and industrial mathematics |
container_volume | 15 |
creator | Rudoy, E. M. Itou, H. Lazarev, N. P. |
description | The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one. |
doi_str_mv | 10.1134/S1990478921010117 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1990478921010117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1990478921010117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3</originalsourceid><addsrcrecordid>eNp9kN9KwzAUxoMoOOYewLu8QDUnSZv0co6pk4nC5nXJ0tRFu6Qk7cXe3pQNbwQ5F-fv7_DxIXQL5A6A8fsNlCXhQpYUSAoQF2gyjjIuSnH5W8vyGs1itDvCgBasKOgEfc_j8dD1vrcavwyxt43VqrfeYd_gfm_wq69NG8duu7cOr5xuh5j2EadOObxsVRzhB18fx9HIzF1vu1Y5gzd7owJ-D37XmsMNumpUG83snKfo43G5XTxn67en1WK-znTSJTK2q4lsaEEkL2pjtCSU54IrkQMFqblRYCijEnLNBOEsJ5pIZoRgShYlV2yK4PRXBx9jME3VBXtQ4VgBqUbDqj-GJYaemJhu3acJ1Zcfgksy_4F-AHPqa9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem</title><source>Springer Link</source><creator>Rudoy, E. M. ; Itou, H. ; Lazarev, N. P.</creator><creatorcontrib>Rudoy, E. M. ; Itou, H. ; Lazarev, N. P.</creatorcontrib><description>The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478921010117</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of applied and industrial mathematics, 2021-02, Vol.15 (1), p.129-140</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3</citedby><cites>FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Rudoy, E. M.</creatorcontrib><creatorcontrib>Itou, H.</creatorcontrib><creatorcontrib>Lazarev, N. P.</creatorcontrib><title>Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kN9KwzAUxoMoOOYewLu8QDUnSZv0co6pk4nC5nXJ0tRFu6Qk7cXe3pQNbwQ5F-fv7_DxIXQL5A6A8fsNlCXhQpYUSAoQF2gyjjIuSnH5W8vyGs1itDvCgBasKOgEfc_j8dD1vrcavwyxt43VqrfeYd_gfm_wq69NG8duu7cOr5xuh5j2EadOObxsVRzhB18fx9HIzF1vu1Y5gzd7owJ-D37XmsMNumpUG83snKfo43G5XTxn67en1WK-znTSJTK2q4lsaEEkL2pjtCSU54IrkQMFqblRYCijEnLNBOEsJ5pIZoRgShYlV2yK4PRXBx9jME3VBXtQ4VgBqUbDqj-GJYaemJhu3acJ1Zcfgksy_4F-AHPqa9Y</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Rudoy, E. M.</creator><creator>Itou, H.</creator><creator>Lazarev, N. P.</creator><general>Pleiades Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem</title><author>Rudoy, E. M. ; Itou, H. ; Lazarev, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudoy, E. M.</creatorcontrib><creatorcontrib>Itou, H.</creatorcontrib><creatorcontrib>Lazarev, N. P.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudoy, E. M.</au><au>Itou, H.</au><au>Lazarev, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>129</spage><epage>140</epage><pages>129-140</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478921010117</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-4789 |
ispartof | Journal of applied and industrial mathematics, 2021-02, Vol.15 (1), p.129-140 |
issn | 1990-4789 1990-4797 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1990478921010117 |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics |
title | Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Justification%20of%20the%20Models%20of%20Thin%20Inclusions%20in%20an%20Elastic%20Body%20in%20the%20Antiplane%20Shear%20Problem&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Rudoy,%20E.%20M.&rft.date=2021-02-01&rft.volume=15&rft.issue=1&rft.spage=129&rft.epage=140&rft.pages=129-140&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478921010117&rft_dat=%3Ccrossref_sprin%3E10_1134_S1990478921010117%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3127-3bd08f260846deec8024574a751218c4ea1e232815c3704350c083e773a8694a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |