Loading…

Five-dimensional lax-integrable equation, its reductions and recursion operator

We consider a five-dimensional nonlinear PDE associated to the five-dimensional equation introduced byMartínez Alonso and Shabat. For our equation we find differential coverings with non-removable parameters and list its reductions to known 4D and 3D integrable equations. One of the coverings produc...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2015-07, Vol.36 (3), p.225-233
Main Authors: Baran, H., Krasil’shchik, I. S., Morozov, O. I., Vojčák, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-f1ff74f7c30376dbed94387509a578c75bdb88e493f8fb0a0241fd9b89a4db43
cites cdi_FETCH-LOGICAL-c288t-f1ff74f7c30376dbed94387509a578c75bdb88e493f8fb0a0241fd9b89a4db43
container_end_page 233
container_issue 3
container_start_page 225
container_title Lobachevskii journal of mathematics
container_volume 36
creator Baran, H.
Krasil’shchik, I. S.
Morozov, O. I.
Vojčák, P.
description We consider a five-dimensional nonlinear PDE associated to the five-dimensional equation introduced byMartínez Alonso and Shabat. For our equation we find differential coverings with non-removable parameters and list its reductions to known 4D and 3D integrable equations. One of the coverings produces a new family of integrable 5D equations. We show that each pair of these equations is related by a Bäcklund transformation, including the Bäcklund auto-transformation for each equation from the family. Also we find a recursion operator for symmetries of the equation and study its action.
doi_str_mv 10.1134/S1995080215030026
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080215030026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080215030026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-f1ff74f7c30376dbed94387509a578c75bdb88e493f8fb0a0241fd9b89a4db43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF1-gNG8Jo-lFF9Q6MLuhzxLynSmJjOi_94MdSe4uvdwznfhHgBuCb4nhPGHd6J1gxWmpMEMYyrOwIIoopDWgp7Xvdpo9i_BVSn7mqBCiAXYPKfPgHw6hL6koTcd7MwXSv0YdtnYLsDwMZmxOncwjQXm4Cc3ywJN76t0U545OBxDNuOQr8FFNF0JN79zCbbPT9vVK1pvXt5Wj2vkqFIjiiRGyaN0DDMpvA1ec6Zkg7VppHKysd4qFbhmUUWLDaacRK-t0oZ7y9kSkNNZl4dScojtMaeDyd8twe1cSPunkMrQE1Nqtt-F3O6HKdeXyz_QD7DmY9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Five-dimensional lax-integrable equation, its reductions and recursion operator</title><source>Springer Link</source><creator>Baran, H. ; Krasil’shchik, I. S. ; Morozov, O. I. ; Vojčák, P.</creator><creatorcontrib>Baran, H. ; Krasil’shchik, I. S. ; Morozov, O. I. ; Vojčák, P.</creatorcontrib><description>We consider a five-dimensional nonlinear PDE associated to the five-dimensional equation introduced byMartínez Alonso and Shabat. For our equation we find differential coverings with non-removable parameters and list its reductions to known 4D and 3D integrable equations. One of the coverings produces a new family of integrable 5D equations. We show that each pair of these equations is related by a Bäcklund transformation, including the Bäcklund auto-transformation for each equation from the family. Also we find a recursion operator for symmetries of the equation and study its action.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080215030026</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2015-07, Vol.36 (3), p.225-233</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-f1ff74f7c30376dbed94387509a578c75bdb88e493f8fb0a0241fd9b89a4db43</citedby><cites>FETCH-LOGICAL-c288t-f1ff74f7c30376dbed94387509a578c75bdb88e493f8fb0a0241fd9b89a4db43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baran, H.</creatorcontrib><creatorcontrib>Krasil’shchik, I. S.</creatorcontrib><creatorcontrib>Morozov, O. I.</creatorcontrib><creatorcontrib>Vojčák, P.</creatorcontrib><title>Five-dimensional lax-integrable equation, its reductions and recursion operator</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider a five-dimensional nonlinear PDE associated to the five-dimensional equation introduced byMartínez Alonso and Shabat. For our equation we find differential coverings with non-removable parameters and list its reductions to known 4D and 3D integrable equations. One of the coverings produces a new family of integrable 5D equations. We show that each pair of these equations is related by a Bäcklund transformation, including the Bäcklund auto-transformation for each equation from the family. Also we find a recursion operator for symmetries of the equation and study its action.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF1-gNG8Jo-lFF9Q6MLuhzxLynSmJjOi_94MdSe4uvdwznfhHgBuCb4nhPGHd6J1gxWmpMEMYyrOwIIoopDWgp7Xvdpo9i_BVSn7mqBCiAXYPKfPgHw6hL6koTcd7MwXSv0YdtnYLsDwMZmxOncwjQXm4Cc3ywJN76t0U545OBxDNuOQr8FFNF0JN79zCbbPT9vVK1pvXt5Wj2vkqFIjiiRGyaN0DDMpvA1ec6Zkg7VppHKysd4qFbhmUUWLDaacRK-t0oZ7y9kSkNNZl4dScojtMaeDyd8twe1cSPunkMrQE1Nqtt-F3O6HKdeXyz_QD7DmY9Q</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Baran, H.</creator><creator>Krasil’shchik, I. S.</creator><creator>Morozov, O. I.</creator><creator>Vojčák, P.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Five-dimensional lax-integrable equation, its reductions and recursion operator</title><author>Baran, H. ; Krasil’shchik, I. S. ; Morozov, O. I. ; Vojčák, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-f1ff74f7c30376dbed94387509a578c75bdb88e493f8fb0a0241fd9b89a4db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baran, H.</creatorcontrib><creatorcontrib>Krasil’shchik, I. S.</creatorcontrib><creatorcontrib>Morozov, O. I.</creatorcontrib><creatorcontrib>Vojčák, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baran, H.</au><au>Krasil’shchik, I. S.</au><au>Morozov, O. I.</au><au>Vojčák, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Five-dimensional lax-integrable equation, its reductions and recursion operator</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>36</volume><issue>3</issue><spage>225</spage><epage>233</epage><pages>225-233</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider a five-dimensional nonlinear PDE associated to the five-dimensional equation introduced byMartínez Alonso and Shabat. For our equation we find differential coverings with non-removable parameters and list its reductions to known 4D and 3D integrable equations. One of the coverings produces a new family of integrable 5D equations. We show that each pair of these equations is related by a Bäcklund transformation, including the Bäcklund auto-transformation for each equation from the family. Also we find a recursion operator for symmetries of the equation and study its action.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080215030026</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2015-07, Vol.36 (3), p.225-233
issn 1995-0802
1818-9962
language eng
recordid cdi_crossref_primary_10_1134_S1995080215030026
source Springer Link
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Five-dimensional lax-integrable equation, its reductions and recursion operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Five-dimensional%20lax-integrable%20equation,%20its%20reductions%20and%20recursion%20operator&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Baran,%20H.&rft.date=2015-07-01&rft.volume=36&rft.issue=3&rft.spage=225&rft.epage=233&rft.pages=225-233&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080215030026&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080215030026%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-f1ff74f7c30376dbed94387509a578c75bdb88e493f8fb0a0241fd9b89a4db43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true