Loading…

Some Spaces of Harmonic Functions in the Unit Ball of ℝn

We introduce the Banach spaces h ∞ ( ϕ ) , h 0 ( ϕ ) and h 1 ( ψ ) functions harmonic in the unit ball B ⊂ ℝ n . These spaces depend on weight functions ϕ, ψ . We prove that if ϕ and ψ form a normal pair, then h 1 ( ψ ) * ∼ h ∞ ( ϕ ) and h 0 ( ϕ )* ∼ h 1 ( ψ ).

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2019-08, Vol.40 (8), p.1132-1136
Main Author: Petrosyan, A. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c853-7121f07a740d8c2dfdc548468db601744e9d5b6944fd39adcdf5822ff6b6d9233
container_end_page 1136
container_issue 8
container_start_page 1132
container_title Lobachevskii journal of mathematics
container_volume 40
creator Petrosyan, A. I.
description We introduce the Banach spaces h ∞ ( ϕ ) , h 0 ( ϕ ) and h 1 ( ψ ) functions harmonic in the unit ball B ⊂ ℝ n . These spaces depend on weight functions ϕ, ψ . We prove that if ϕ and ψ form a normal pair, then h 1 ( ψ ) * ∼ h ∞ ( ϕ ) and h 0 ( ϕ )* ∼ h 1 ( ψ ).
doi_str_mv 10.1134/S1995080219080213
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080219080213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080219080213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c853-7121f07a740d8c2dfdc548468db601744e9d5b6944fd39adcdf5822ff6b6d9233</originalsourceid><addsrcrecordid>eNp9j01OwzAQhS0EEqVwAHa-QMDjOI7NDiraIlVikbKOHP9AqsSu7HTBnmtwOU5CQtkhsZkZ6b1v9B5C10BuAHJ2W4GUBRGEgvyZ-QmagQCRScnp6XiPcjYp5-gipR0hlHLOZ-iuCr3F1V5pm3BweK1iH3yr8fLg9dAGn3Dr8fBm8YtvB_ygum6yfX18-kt05lSX7NXvnqPt8nG7WGeb59XT4n6TaVHkWQkUHClVyYgRmhpndMEE48I0nEDJmJWmaLhkzJlcKqONKwSlzvGGG0nzfI7g-FbHkFK0rt7HtlfxvQZST93rP91Hhh6ZNHr9q431LhyiH1P-A30DzC1abg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Spaces of Harmonic Functions in the Unit Ball of ℝn</title><source>Springer Nature</source><creator>Petrosyan, A. I.</creator><creatorcontrib>Petrosyan, A. I.</creatorcontrib><description>We introduce the Banach spaces h ∞ ( ϕ ) , h 0 ( ϕ ) and h 1 ( ψ ) functions harmonic in the unit ball B ⊂ ℝ n . These spaces depend on weight functions ϕ, ψ . We prove that if ϕ and ψ form a normal pair, then h 1 ( ψ ) * ∼ h ∞ ( ϕ ) and h 0 ( ϕ )* ∼ h 1 ( ψ ).</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080219080213</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2019-08, Vol.40 (8), p.1132-1136</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c853-7121f07a740d8c2dfdc548468db601744e9d5b6944fd39adcdf5822ff6b6d9233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Petrosyan, A. I.</creatorcontrib><title>Some Spaces of Harmonic Functions in the Unit Ball of ℝn</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We introduce the Banach spaces h ∞ ( ϕ ) , h 0 ( ϕ ) and h 1 ( ψ ) functions harmonic in the unit ball B ⊂ ℝ n . These spaces depend on weight functions ϕ, ψ . We prove that if ϕ and ψ form a normal pair, then h 1 ( ψ ) * ∼ h ∞ ( ϕ ) and h 0 ( ϕ )* ∼ h 1 ( ψ ).</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j01OwzAQhS0EEqVwAHa-QMDjOI7NDiraIlVikbKOHP9AqsSu7HTBnmtwOU5CQtkhsZkZ6b1v9B5C10BuAHJ2W4GUBRGEgvyZ-QmagQCRScnp6XiPcjYp5-gipR0hlHLOZ-iuCr3F1V5pm3BweK1iH3yr8fLg9dAGn3Dr8fBm8YtvB_ygum6yfX18-kt05lSX7NXvnqPt8nG7WGeb59XT4n6TaVHkWQkUHClVyYgRmhpndMEE48I0nEDJmJWmaLhkzJlcKqONKwSlzvGGG0nzfI7g-FbHkFK0rt7HtlfxvQZST93rP91Hhh6ZNHr9q431LhyiH1P-A30DzC1abg</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Petrosyan, A. I.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201908</creationdate><title>Some Spaces of Harmonic Functions in the Unit Ball of ℝn</title><author>Petrosyan, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c853-7121f07a740d8c2dfdc548468db601744e9d5b6944fd39adcdf5822ff6b6d9233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrosyan, A. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrosyan, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Spaces of Harmonic Functions in the Unit Ball of ℝn</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2019-08</date><risdate>2019</risdate><volume>40</volume><issue>8</issue><spage>1132</spage><epage>1136</epage><pages>1132-1136</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We introduce the Banach spaces h ∞ ( ϕ ) , h 0 ( ϕ ) and h 1 ( ψ ) functions harmonic in the unit ball B ⊂ ℝ n . These spaces depend on weight functions ϕ, ψ . We prove that if ϕ and ψ form a normal pair, then h 1 ( ψ ) * ∼ h ∞ ( ϕ ) and h 0 ( ϕ )* ∼ h 1 ( ψ ).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080219080213</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2019-08, Vol.40 (8), p.1132-1136
issn 1995-0802
1818-9962
language eng
recordid cdi_crossref_primary_10_1134_S1995080219080213
source Springer Nature
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Some Spaces of Harmonic Functions in the Unit Ball of ℝn
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Spaces%20of%20Harmonic%20Functions%20in%20the%20Unit%20Ball%20of%20%E2%84%9Dn&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Petrosyan,%20A.%20I.&rft.date=2019-08&rft.volume=40&rft.issue=8&rft.spage=1132&rft.epage=1136&rft.pages=1132-1136&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080219080213&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080219080213%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c853-7121f07a740d8c2dfdc548468db601744e9d5b6944fd39adcdf5822ff6b6d9233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true