Loading…
Physicomechanical and Elastic Properties of Polylactide–5,10,15,20-Tetrakis(4-n-hexyloxyphenyl)porphyrin Composite Materials
Porphyrin–polymer systems are promising materials for their use in biotechnology, biochemistry, and medicine. The creation of composite materials from porphyrins expands the possibilities of using both high molecular weight compounds and porphyrins. Polylactide–porphyrin film samples obtained by sol...
Saved in:
Published in: | Polymer science. Series D, Glues and sealing materials Glues and sealing materials, 2024-09, Vol.17 (3), p.730-734 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Porphyrin–polymer systems are promising materials for their use in biotechnology, biochemistry, and medicine. The creation of composite materials from porphyrins expands the possibilities of using both high molecular weight compounds and porphyrins. Polylactide–porphyrin film samples obtained by solution watering method are studied in this work. It was found that the density of the film compositions decreases with an increase in an amount of porphyrin in the polymer matrix. A Soret peak of porphyrin immobilized into the polylactide matrix splits (425 and 447 nm) and shifts bathochromically. The addition of 5,10,15,20-tetrakis(4-
n
-hexyloxyphenyl)porphyrin changes the elastic behavior and strength properties. Shear modulus, elastic modulus, and tensile strength decrease with an increase in an amount of porphyrin in the polylactide matrix. Relative elongation at break increases slightly, and the Poisson’s ratio is almost unchanged compared to those of starting polylactide. |
---|---|
ISSN: | 1995-4212 1995-4220 |
DOI: | 10.1134/S1995421224701259 |