Loading…

Synthesizing polyisoprene on titaniumium catalysts modified in turbulent flows

Microheterogeneous titanium catalyst is now widely used in the production of stereoregular polyisoprene, one of the highest-volume products in the current production of synthetic caoutchouc. This work considers the principles of the formation of titanium catalyst at temperatures from −10 to −15°C an...

Full description

Saved in:
Bibliographic Details
Published in:Catalysis in industry 2012-07, Vol.4 (3), p.174-178
Main Authors: Morozov, Yu. V., Nasyrov, I. Sh, Zakharov, V. P., Mingaleev, V. Z., Zakharova, E. M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-e2fc6162e3c72d8bf0bf0343512d78578bad01690403b2c681f0d2eb99af96023
cites
container_end_page 178
container_issue 3
container_start_page 174
container_title Catalysis in industry
container_volume 4
creator Morozov, Yu. V.
Nasyrov, I. Sh
Zakharov, V. P.
Mingaleev, V. Z.
Zakharova, E. M.
description Microheterogeneous titanium catalyst is now widely used in the production of stereoregular polyisoprene, one of the highest-volume products in the current production of synthetic caoutchouc. This work considers the principles of the formation of titanium catalyst at temperatures from −10 to −15°C and isoprene polymerization in a medium of aliphatic solvent (isopentane) under conditions of altered hydrodynamic movement of a catalytically active particle suspension. Agitation is intensified via turbulization of the suspension flow in the external circulation contour during the process of active site formation and their collection for polymerization. A small tube turbulent apparatus of diffuser-confuser design is used at this stage for the first time. Isoprene polymerization proceeds on one type of sites that form polymers with narrow molecular weight distributions (polydispersity coefficient 2.1–2.8). More reactive macromolecule growth sites can be obtained as a result of the hydrodynamic impact on the industrial microheterogenic titanium catalyst during its preliminary formation, due to circulation in the tubular apparatus. This ensures the synthesis of high-molecular polyisoprene that has a more stable Mooney viscosity parameter. Modifying the titanium catalyst through the hydrodynamic impact on a suspension of catalytically active particles during the formation of a catalytic system is an effective method for improving the corresponding stage of the industrial production of polyisoprene.
doi_str_mv 10.1134/S2070050412030099
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S2070050412030099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S2070050412030099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-e2fc6162e3c72d8bf0bf0343512d78578bad01690403b2c681f0d2eb99af96023</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWGofwLu8wOok2Z_kUop_UPSier1kN0lN2U1KkkXWpzel4o3gcGCG4XzDcBC6JnBDCCtvtxQagApKQoEBCHGGFsdVAVVVnf_OUF6iVYx7yEWFEA1foJft7NKHjvbLuh0--GG20R-Cdhp7h5NN0tlpzMK9THKYY4p49MoaqxW22TGFbhq0S9gM_jNeoQsjh6hXP32J3h_u39ZPxeb18Xl9tyl6ynkqNDV9TWqqWd9QxTsDWaxkFaGq4VXDO6mA1AJKYB3ta04MKKo7IaQRNVC2ROR0tw8-xqBNewh2lGFuCbTHTNo_mWSGnpiYvW6nQ7v3U3D5zX-gb8MLZC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesizing polyisoprene on titaniumium catalysts modified in turbulent flows</title><source>Springer Link</source><creator>Morozov, Yu. V. ; Nasyrov, I. Sh ; Zakharov, V. P. ; Mingaleev, V. Z. ; Zakharova, E. M.</creator><creatorcontrib>Morozov, Yu. V. ; Nasyrov, I. Sh ; Zakharov, V. P. ; Mingaleev, V. Z. ; Zakharova, E. M.</creatorcontrib><description>Microheterogeneous titanium catalyst is now widely used in the production of stereoregular polyisoprene, one of the highest-volume products in the current production of synthetic caoutchouc. This work considers the principles of the formation of titanium catalyst at temperatures from −10 to −15°C and isoprene polymerization in a medium of aliphatic solvent (isopentane) under conditions of altered hydrodynamic movement of a catalytically active particle suspension. Agitation is intensified via turbulization of the suspension flow in the external circulation contour during the process of active site formation and their collection for polymerization. A small tube turbulent apparatus of diffuser-confuser design is used at this stage for the first time. Isoprene polymerization proceeds on one type of sites that form polymers with narrow molecular weight distributions (polydispersity coefficient 2.1–2.8). More reactive macromolecule growth sites can be obtained as a result of the hydrodynamic impact on the industrial microheterogenic titanium catalyst during its preliminary formation, due to circulation in the tubular apparatus. This ensures the synthesis of high-molecular polyisoprene that has a more stable Mooney viscosity parameter. Modifying the titanium catalyst through the hydrodynamic impact on a suspension of catalytically active particles during the formation of a catalytic system is an effective method for improving the corresponding stage of the industrial production of polyisoprene.</description><identifier>ISSN: 2070-0504</identifier><identifier>EISSN: 2070-0555</identifier><identifier>DOI: 10.1134/S2070050412030099</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Catalysis ; Catalysis in Chemical and Petrochemical Industry ; Chemistry ; Chemistry and Materials Science</subject><ispartof>Catalysis in industry, 2012-07, Vol.4 (3), p.174-178</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-e2fc6162e3c72d8bf0bf0343512d78578bad01690403b2c681f0d2eb99af96023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Morozov, Yu. V.</creatorcontrib><creatorcontrib>Nasyrov, I. Sh</creatorcontrib><creatorcontrib>Zakharov, V. P.</creatorcontrib><creatorcontrib>Mingaleev, V. Z.</creatorcontrib><creatorcontrib>Zakharova, E. M.</creatorcontrib><title>Synthesizing polyisoprene on titaniumium catalysts modified in turbulent flows</title><title>Catalysis in industry</title><addtitle>Catal. Ind</addtitle><description>Microheterogeneous titanium catalyst is now widely used in the production of stereoregular polyisoprene, one of the highest-volume products in the current production of synthetic caoutchouc. This work considers the principles of the formation of titanium catalyst at temperatures from −10 to −15°C and isoprene polymerization in a medium of aliphatic solvent (isopentane) under conditions of altered hydrodynamic movement of a catalytically active particle suspension. Agitation is intensified via turbulization of the suspension flow in the external circulation contour during the process of active site formation and their collection for polymerization. A small tube turbulent apparatus of diffuser-confuser design is used at this stage for the first time. Isoprene polymerization proceeds on one type of sites that form polymers with narrow molecular weight distributions (polydispersity coefficient 2.1–2.8). More reactive macromolecule growth sites can be obtained as a result of the hydrodynamic impact on the industrial microheterogenic titanium catalyst during its preliminary formation, due to circulation in the tubular apparatus. This ensures the synthesis of high-molecular polyisoprene that has a more stable Mooney viscosity parameter. Modifying the titanium catalyst through the hydrodynamic impact on a suspension of catalytically active particles during the formation of a catalytic system is an effective method for improving the corresponding stage of the industrial production of polyisoprene.</description><subject>Catalysis</subject><subject>Catalysis in Chemical and Petrochemical Industry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><issn>2070-0504</issn><issn>2070-0555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWGofwLu8wOok2Z_kUop_UPSier1kN0lN2U1KkkXWpzel4o3gcGCG4XzDcBC6JnBDCCtvtxQagApKQoEBCHGGFsdVAVVVnf_OUF6iVYx7yEWFEA1foJft7NKHjvbLuh0--GG20R-Cdhp7h5NN0tlpzMK9THKYY4p49MoaqxW22TGFbhq0S9gM_jNeoQsjh6hXP32J3h_u39ZPxeb18Xl9tyl6ynkqNDV9TWqqWd9QxTsDWaxkFaGq4VXDO6mA1AJKYB3ta04MKKo7IaQRNVC2ROR0tw8-xqBNewh2lGFuCbTHTNo_mWSGnpiYvW6nQ7v3U3D5zX-gb8MLZC0</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Morozov, Yu. V.</creator><creator>Nasyrov, I. Sh</creator><creator>Zakharov, V. P.</creator><creator>Mingaleev, V. Z.</creator><creator>Zakharova, E. M.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>Synthesizing polyisoprene on titaniumium catalysts modified in turbulent flows</title><author>Morozov, Yu. V. ; Nasyrov, I. Sh ; Zakharov, V. P. ; Mingaleev, V. Z. ; Zakharova, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-e2fc6162e3c72d8bf0bf0343512d78578bad01690403b2c681f0d2eb99af96023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Catalysis</topic><topic>Catalysis in Chemical and Petrochemical Industry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morozov, Yu. V.</creatorcontrib><creatorcontrib>Nasyrov, I. Sh</creatorcontrib><creatorcontrib>Zakharov, V. P.</creatorcontrib><creatorcontrib>Mingaleev, V. Z.</creatorcontrib><creatorcontrib>Zakharova, E. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Catalysis in industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morozov, Yu. V.</au><au>Nasyrov, I. Sh</au><au>Zakharov, V. P.</au><au>Mingaleev, V. Z.</au><au>Zakharova, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesizing polyisoprene on titaniumium catalysts modified in turbulent flows</atitle><jtitle>Catalysis in industry</jtitle><stitle>Catal. Ind</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>4</volume><issue>3</issue><spage>174</spage><epage>178</epage><pages>174-178</pages><issn>2070-0504</issn><eissn>2070-0555</eissn><abstract>Microheterogeneous titanium catalyst is now widely used in the production of stereoregular polyisoprene, one of the highest-volume products in the current production of synthetic caoutchouc. This work considers the principles of the formation of titanium catalyst at temperatures from −10 to −15°C and isoprene polymerization in a medium of aliphatic solvent (isopentane) under conditions of altered hydrodynamic movement of a catalytically active particle suspension. Agitation is intensified via turbulization of the suspension flow in the external circulation contour during the process of active site formation and their collection for polymerization. A small tube turbulent apparatus of diffuser-confuser design is used at this stage for the first time. Isoprene polymerization proceeds on one type of sites that form polymers with narrow molecular weight distributions (polydispersity coefficient 2.1–2.8). More reactive macromolecule growth sites can be obtained as a result of the hydrodynamic impact on the industrial microheterogenic titanium catalyst during its preliminary formation, due to circulation in the tubular apparatus. This ensures the synthesis of high-molecular polyisoprene that has a more stable Mooney viscosity parameter. Modifying the titanium catalyst through the hydrodynamic impact on a suspension of catalytically active particles during the formation of a catalytic system is an effective method for improving the corresponding stage of the industrial production of polyisoprene.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S2070050412030099</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-0504
ispartof Catalysis in industry, 2012-07, Vol.4 (3), p.174-178
issn 2070-0504
2070-0555
language eng
recordid cdi_crossref_primary_10_1134_S2070050412030099
source Springer Link
subjects Catalysis
Catalysis in Chemical and Petrochemical Industry
Chemistry
Chemistry and Materials Science
title Synthesizing polyisoprene on titaniumium catalysts modified in turbulent flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesizing%20polyisoprene%20on%20titaniumium%20catalysts%20modified%20in%20turbulent%20flows&rft.jtitle=Catalysis%20in%20industry&rft.au=Morozov,%20Yu.%20V.&rft.date=2012-07-01&rft.volume=4&rft.issue=3&rft.spage=174&rft.epage=178&rft.pages=174-178&rft.issn=2070-0504&rft.eissn=2070-0555&rft_id=info:doi/10.1134/S2070050412030099&rft_dat=%3Ccrossref_sprin%3E10_1134_S2070050412030099%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-e2fc6162e3c72d8bf0bf0343512d78578bad01690403b2c681f0d2eb99af96023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true