Loading…
Electrosynthesis of Poly(ortho-phenetidine) Coatings on Steel and Investigation of Their Corrosion Protection Properties
Poly(ortho-phenetidine) coatings on 304 stainless steel (304 SS) surface have been synthesized by using the galvanostatic technique. The electrosynthesized coatings were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), UV-visible absorption spectrometry and Scanning Electron Microsc...
Saved in:
Published in: | Protection of metals and physical chemistry of surfaces 2018, Vol.54 (1), p.104-112 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Poly(ortho-phenetidine) coatings on 304 stainless steel (304 SS) surface have been synthesized by using the galvanostatic technique. The electrosynthesized coatings were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), UV-visible absorption spectrometry and Scanning Electron Microscopy (SEM). The anticorrosion performances of poly(ortho-phenetidine) coatings were examined in 0.1 M HCl medium by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization technique. The corrosion rate of poly(ortho-phenetidine)-coated 304 SS was found ~10 times lower than bare 304 SS and corrosion potential increased from –0.29 V for uncoated 304 SS to –0.19 V versus Ag/AgCl (3 M KCl) for poly(ortho-phenetidine)-coated 304 SS electrode. Electrochemical measurements indicate that poly(ortho-phenetidine) coating has good inhibiting properties with an efficiency of ~93% at 1.5 mA cm
–2
applied current density in acidic corrosive media. The results of this study obviously ascertain that the poly(ortho-phenetidine) has an outstanding potential to protect 304 SS against corrosion in an acidic environment. |
---|---|
ISSN: | 2070-2051 2070-206X |
DOI: | 10.1134/S2070205118010276 |