Loading…

Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources

The crystallization of the lithium titanate Li 4 Ti 5 O 12 powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of struct...

Full description

Saved in:
Bibliographic Details
Published in:Protection of metals and physical chemistry of surfaces 2020-09, Vol.56 (5), p.951-956
Main Authors: Ivanenko, V. I., Maslova, M. V., Kunshina, G. B., Vladimirova, S. V., Agafonov, D. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643
cites cdi_FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643
container_end_page 956
container_issue 5
container_start_page 951
container_title Protection of metals and physical chemistry of surfaces
container_volume 56
creator Ivanenko, V. I.
Maslova, M. V.
Kunshina, G. B.
Vladimirova, S. V.
Agafonov, D. V.
description The crystallization of the lithium titanate Li 4 Ti 5 O 12 powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of structural defects that create microstresses and do not allow the formation of relatively large crystallites. An increase in the content of the introduced lanthanum(III) cations makes it possible to obtain a composite material based on lithium titanate Li 4 Ti 5 O 12 and solid electrolyte Li 0.5 La 0.5 TiO 3 . Reducing the particle size of the powders during preparation of the modified crystalline powders of lithium titanate Li 4 Ti 5 O 12 by doping with lanthanum(III) cations and the formation of solid electrolyte-containing composites provides an increase in lithium-ion conductivity. The resulting materials are characterized by high and stable values of the capacity of the battery layout during cycling in the “charge–discharge” mode.
doi_str_mv 10.1134/S2070205120040139
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S2070205120040139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S2070205120040139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gywmA4O3YSj6UUiBTo0CKxRY7j0FSNXdnOwL_HVRELEtPdO73v9O4QuiZwR0jK7lcUcqDACQVgQFJxgiaHEaaQfZz-9pycowvvtwBZlhf5BDWVNGEjzTjclGV5ix_tXrdJ1bN1z5eE4gfpo36TxvrgRhVGF-XM2FYnrzJo18td0lkXibDpxwGX1iTz0TltQrKyo1PaX6KzTu68vvqpU_T-tFjPX3C1fC7nswqrlPKAhSq0EA0pGkm54h0DDgWRTDAiGGgtdCObtMtZmsdbFG07YLKRqiXRqDOWThE57lXOeu90V-9dP0j3VROoD0-q_zwpMvTI-Og1n9rV2xjaxJj_QN8mnWf1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ivanenko, V. I. ; Maslova, M. V. ; Kunshina, G. B. ; Vladimirova, S. V. ; Agafonov, D. V.</creator><creatorcontrib>Ivanenko, V. I. ; Maslova, M. V. ; Kunshina, G. B. ; Vladimirova, S. V. ; Agafonov, D. V.</creatorcontrib><description>The crystallization of the lithium titanate Li 4 Ti 5 O 12 powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of structural defects that create microstresses and do not allow the formation of relatively large crystallites. An increase in the content of the introduced lanthanum(III) cations makes it possible to obtain a composite material based on lithium titanate Li 4 Ti 5 O 12 and solid electrolyte Li 0.5 La 0.5 TiO 3 . Reducing the particle size of the powders during preparation of the modified crystalline powders of lithium titanate Li 4 Ti 5 O 12 by doping with lanthanum(III) cations and the formation of solid electrolyte-containing composites provides an increase in lithium-ion conductivity. The resulting materials are characterized by high and stable values of the capacity of the battery layout during cycling in the “charge–discharge” mode.</description><identifier>ISSN: 2070-2051</identifier><identifier>EISSN: 2070-206X</identifier><identifier>DOI: 10.1134/S2070205120040139</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Materials Science ; Metallic Materials ; Nanoscale and Nanostructured Materials and Coatings ; Tribology</subject><ispartof>Protection of metals and physical chemistry of surfaces, 2020-09, Vol.56 (5), p.951-956</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643</citedby><cites>FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ivanenko, V. I.</creatorcontrib><creatorcontrib>Maslova, M. V.</creatorcontrib><creatorcontrib>Kunshina, G. B.</creatorcontrib><creatorcontrib>Vladimirova, S. V.</creatorcontrib><creatorcontrib>Agafonov, D. V.</creatorcontrib><title>Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources</title><title>Protection of metals and physical chemistry of surfaces</title><addtitle>Prot Met Phys Chem Surf</addtitle><description>The crystallization of the lithium titanate Li 4 Ti 5 O 12 powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of structural defects that create microstresses and do not allow the formation of relatively large crystallites. An increase in the content of the introduced lanthanum(III) cations makes it possible to obtain a composite material based on lithium titanate Li 4 Ti 5 O 12 and solid electrolyte Li 0.5 La 0.5 TiO 3 . Reducing the particle size of the powders during preparation of the modified crystalline powders of lithium titanate Li 4 Ti 5 O 12 by doping with lanthanum(III) cations and the formation of solid electrolyte-containing composites provides an increase in lithium-ion conductivity. The resulting materials are characterized by high and stable values of the capacity of the battery layout during cycling in the “charge–discharge” mode.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale and Nanostructured Materials and Coatings</subject><subject>Tribology</subject><issn>2070-2051</issn><issn>2070-206X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9gywmA4O3YSj6UUiBTo0CKxRY7j0FSNXdnOwL_HVRELEtPdO73v9O4QuiZwR0jK7lcUcqDACQVgQFJxgiaHEaaQfZz-9pycowvvtwBZlhf5BDWVNGEjzTjclGV5ix_tXrdJ1bN1z5eE4gfpo36TxvrgRhVGF-XM2FYnrzJo18td0lkXibDpxwGX1iTz0TltQrKyo1PaX6KzTu68vvqpU_T-tFjPX3C1fC7nswqrlPKAhSq0EA0pGkm54h0DDgWRTDAiGGgtdCObtMtZmsdbFG07YLKRqiXRqDOWThE57lXOeu90V-9dP0j3VROoD0-q_zwpMvTI-Og1n9rV2xjaxJj_QN8mnWf1</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ivanenko, V. I.</creator><creator>Maslova, M. V.</creator><creator>Kunshina, G. B.</creator><creator>Vladimirova, S. V.</creator><creator>Agafonov, D. V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources</title><author>Ivanenko, V. I. ; Maslova, M. V. ; Kunshina, G. B. ; Vladimirova, S. V. ; Agafonov, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale and Nanostructured Materials and Coatings</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanenko, V. I.</creatorcontrib><creatorcontrib>Maslova, M. V.</creatorcontrib><creatorcontrib>Kunshina, G. B.</creatorcontrib><creatorcontrib>Vladimirova, S. V.</creatorcontrib><creatorcontrib>Agafonov, D. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Protection of metals and physical chemistry of surfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanenko, V. I.</au><au>Maslova, M. V.</au><au>Kunshina, G. B.</au><au>Vladimirova, S. V.</au><au>Agafonov, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources</atitle><jtitle>Protection of metals and physical chemistry of surfaces</jtitle><stitle>Prot Met Phys Chem Surf</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>951</spage><epage>956</epage><pages>951-956</pages><issn>2070-2051</issn><eissn>2070-206X</eissn><abstract>The crystallization of the lithium titanate Li 4 Ti 5 O 12 powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of structural defects that create microstresses and do not allow the formation of relatively large crystallites. An increase in the content of the introduced lanthanum(III) cations makes it possible to obtain a composite material based on lithium titanate Li 4 Ti 5 O 12 and solid electrolyte Li 0.5 La 0.5 TiO 3 . Reducing the particle size of the powders during preparation of the modified crystalline powders of lithium titanate Li 4 Ti 5 O 12 by doping with lanthanum(III) cations and the formation of solid electrolyte-containing composites provides an increase in lithium-ion conductivity. The resulting materials are characterized by high and stable values of the capacity of the battery layout during cycling in the “charge–discharge” mode.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070205120040139</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-2051
ispartof Protection of metals and physical chemistry of surfaces, 2020-09, Vol.56 (5), p.951-956
issn 2070-2051
2070-206X
language eng
recordid cdi_crossref_primary_10_1134_S2070205120040139
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Materials Science
Metallic Materials
Nanoscale and Nanostructured Materials and Coatings
Tribology
title Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lanthanum(III)-Doped%20Li4Ti5O12-Based%20Nanostructured%20Anode%20Material%20for%20Lithium-Ion%20Current%20Sources&rft.jtitle=Protection%20of%20metals%20and%20physical%20chemistry%20of%20surfaces&rft.au=Ivanenko,%20V.%20I.&rft.date=2020-09-01&rft.volume=56&rft.issue=5&rft.spage=951&rft.epage=956&rft.pages=951-956&rft.issn=2070-2051&rft.eissn=2070-206X&rft_id=info:doi/10.1134/S2070205120040139&rft_dat=%3Ccrossref_sprin%3E10_1134_S2070205120040139%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true