Loading…
Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources
The crystallization of the lithium titanate Li 4 Ti 5 O 12 powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of struct...
Saved in:
Published in: | Protection of metals and physical chemistry of surfaces 2020-09, Vol.56 (5), p.951-956 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643 |
container_end_page | 956 |
container_issue | 5 |
container_start_page | 951 |
container_title | Protection of metals and physical chemistry of surfaces |
container_volume | 56 |
creator | Ivanenko, V. I. Maslova, M. V. Kunshina, G. B. Vladimirova, S. V. Agafonov, D. V. |
description | The crystallization of the lithium titanate Li
4
Ti
5
O
12
powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of structural defects that create microstresses and do not allow the formation of relatively large crystallites. An increase in the content of the introduced lanthanum(III) cations makes it possible to obtain a composite material based on lithium titanate Li
4
Ti
5
O
12
and solid electrolyte Li
0.5
La
0.5
TiO
3
. Reducing the particle size of the powders during preparation of the modified crystalline powders of lithium titanate Li
4
Ti
5
O
12
by doping with lanthanum(III) cations and the formation of solid electrolyte-containing composites provides an increase in lithium-ion conductivity. The resulting materials are characterized by high and stable values of the capacity of the battery layout during cycling in the “charge–discharge” mode. |
doi_str_mv | 10.1134/S2070205120040139 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S2070205120040139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S2070205120040139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gywmA4O3YSj6UUiBTo0CKxRY7j0FSNXdnOwL_HVRELEtPdO73v9O4QuiZwR0jK7lcUcqDACQVgQFJxgiaHEaaQfZz-9pycowvvtwBZlhf5BDWVNGEjzTjclGV5ix_tXrdJ1bN1z5eE4gfpo36TxvrgRhVGF-XM2FYnrzJo18td0lkXibDpxwGX1iTz0TltQrKyo1PaX6KzTu68vvqpU_T-tFjPX3C1fC7nswqrlPKAhSq0EA0pGkm54h0DDgWRTDAiGGgtdCObtMtZmsdbFG07YLKRqiXRqDOWThE57lXOeu90V-9dP0j3VROoD0-q_zwpMvTI-Og1n9rV2xjaxJj_QN8mnWf1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ivanenko, V. I. ; Maslova, M. V. ; Kunshina, G. B. ; Vladimirova, S. V. ; Agafonov, D. V.</creator><creatorcontrib>Ivanenko, V. I. ; Maslova, M. V. ; Kunshina, G. B. ; Vladimirova, S. V. ; Agafonov, D. V.</creatorcontrib><description>The crystallization of the lithium titanate Li
4
Ti
5
O
12
powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of structural defects that create microstresses and do not allow the formation of relatively large crystallites. An increase in the content of the introduced lanthanum(III) cations makes it possible to obtain a composite material based on lithium titanate Li
4
Ti
5
O
12
and solid electrolyte Li
0.5
La
0.5
TiO
3
. Reducing the particle size of the powders during preparation of the modified crystalline powders of lithium titanate Li
4
Ti
5
O
12
by doping with lanthanum(III) cations and the formation of solid electrolyte-containing composites provides an increase in lithium-ion conductivity. The resulting materials are characterized by high and stable values of the capacity of the battery layout during cycling in the “charge–discharge” mode.</description><identifier>ISSN: 2070-2051</identifier><identifier>EISSN: 2070-206X</identifier><identifier>DOI: 10.1134/S2070205120040139</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Materials Science ; Metallic Materials ; Nanoscale and Nanostructured Materials and Coatings ; Tribology</subject><ispartof>Protection of metals and physical chemistry of surfaces, 2020-09, Vol.56 (5), p.951-956</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643</citedby><cites>FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ivanenko, V. I.</creatorcontrib><creatorcontrib>Maslova, M. V.</creatorcontrib><creatorcontrib>Kunshina, G. B.</creatorcontrib><creatorcontrib>Vladimirova, S. V.</creatorcontrib><creatorcontrib>Agafonov, D. V.</creatorcontrib><title>Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources</title><title>Protection of metals and physical chemistry of surfaces</title><addtitle>Prot Met Phys Chem Surf</addtitle><description>The crystallization of the lithium titanate Li
4
Ti
5
O
12
powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of structural defects that create microstresses and do not allow the formation of relatively large crystallites. An increase in the content of the introduced lanthanum(III) cations makes it possible to obtain a composite material based on lithium titanate Li
4
Ti
5
O
12
and solid electrolyte Li
0.5
La
0.5
TiO
3
. Reducing the particle size of the powders during preparation of the modified crystalline powders of lithium titanate Li
4
Ti
5
O
12
by doping with lanthanum(III) cations and the formation of solid electrolyte-containing composites provides an increase in lithium-ion conductivity. The resulting materials are characterized by high and stable values of the capacity of the battery layout during cycling in the “charge–discharge” mode.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale and Nanostructured Materials and Coatings</subject><subject>Tribology</subject><issn>2070-2051</issn><issn>2070-206X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9gywmA4O3YSj6UUiBTo0CKxRY7j0FSNXdnOwL_HVRELEtPdO73v9O4QuiZwR0jK7lcUcqDACQVgQFJxgiaHEaaQfZz-9pycowvvtwBZlhf5BDWVNGEjzTjclGV5ix_tXrdJ1bN1z5eE4gfpo36TxvrgRhVGF-XM2FYnrzJo18td0lkXibDpxwGX1iTz0TltQrKyo1PaX6KzTu68vvqpU_T-tFjPX3C1fC7nswqrlPKAhSq0EA0pGkm54h0DDgWRTDAiGGgtdCObtMtZmsdbFG07YLKRqiXRqDOWThE57lXOeu90V-9dP0j3VROoD0-q_zwpMvTI-Og1n9rV2xjaxJj_QN8mnWf1</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ivanenko, V. I.</creator><creator>Maslova, M. V.</creator><creator>Kunshina, G. B.</creator><creator>Vladimirova, S. V.</creator><creator>Agafonov, D. V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources</title><author>Ivanenko, V. I. ; Maslova, M. V. ; Kunshina, G. B. ; Vladimirova, S. V. ; Agafonov, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale and Nanostructured Materials and Coatings</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanenko, V. I.</creatorcontrib><creatorcontrib>Maslova, M. V.</creatorcontrib><creatorcontrib>Kunshina, G. B.</creatorcontrib><creatorcontrib>Vladimirova, S. V.</creatorcontrib><creatorcontrib>Agafonov, D. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Protection of metals and physical chemistry of surfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanenko, V. I.</au><au>Maslova, M. V.</au><au>Kunshina, G. B.</au><au>Vladimirova, S. V.</au><au>Agafonov, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources</atitle><jtitle>Protection of metals and physical chemistry of surfaces</jtitle><stitle>Prot Met Phys Chem Surf</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>951</spage><epage>956</epage><pages>951-956</pages><issn>2070-2051</issn><eissn>2070-206X</eissn><abstract>The crystallization of the lithium titanate Li
4
Ti
5
O
12
powders during doping with lanthanum(III) cations is studied. The introduction of up to 4 wt % La(III) does not change the crystalline structure of the material and increases the powder dispersity, which may be due to the formation of structural defects that create microstresses and do not allow the formation of relatively large crystallites. An increase in the content of the introduced lanthanum(III) cations makes it possible to obtain a composite material based on lithium titanate Li
4
Ti
5
O
12
and solid electrolyte Li
0.5
La
0.5
TiO
3
. Reducing the particle size of the powders during preparation of the modified crystalline powders of lithium titanate Li
4
Ti
5
O
12
by doping with lanthanum(III) cations and the formation of solid electrolyte-containing composites provides an increase in lithium-ion conductivity. The resulting materials are characterized by high and stable values of the capacity of the battery layout during cycling in the “charge–discharge” mode.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070205120040139</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-2051 |
ispartof | Protection of metals and physical chemistry of surfaces, 2020-09, Vol.56 (5), p.951-956 |
issn | 2070-2051 2070-206X |
language | eng |
recordid | cdi_crossref_primary_10_1134_S2070205120040139 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Industrial Chemistry/Chemical Engineering Inorganic Chemistry Materials Science Metallic Materials Nanoscale and Nanostructured Materials and Coatings Tribology |
title | Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lanthanum(III)-Doped%20Li4Ti5O12-Based%20Nanostructured%20Anode%20Material%20for%20Lithium-Ion%20Current%20Sources&rft.jtitle=Protection%20of%20metals%20and%20physical%20chemistry%20of%20surfaces&rft.au=Ivanenko,%20V.%20I.&rft.date=2020-09-01&rft.volume=56&rft.issue=5&rft.spage=951&rft.epage=956&rft.pages=951-956&rft.issn=2070-2051&rft.eissn=2070-206X&rft_id=info:doi/10.1134/S2070205120040139&rft_dat=%3Ccrossref_sprin%3E10_1134_S2070205120040139%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-9c8e99b18ba25c5f405081a4941940ee9ebab3f7437070c2df04abacd1050e643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |