Loading…
A Probabilistic Analysis of the Game of the Goose
We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivati...
Saved in:
Published in: | SIAM review 2016-01, Vol.58 (1), p.143-155 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533 |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533 |
container_end_page | 155 |
container_issue | 1 |
container_start_page | 143 |
container_title | SIAM review |
container_volume | 58 |
creator | Groote, Jan Friso Wiedijk, Freek Zantema, Hans |
description | We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivation to investigate this game came from progress in stochastic process theories, which prompted the question of whether such methods are capable of dealing with well-known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we find that some common wisdom about the game is not true. |
doi_str_mv | 10.1137/140983781 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_140983781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24778847</jstor_id><sourcerecordid>24778847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533</originalsourceid><addsrcrecordid>eNo9j01LxDAQhoMoWFcP_gChVw_VmXxNeiyLrsLC7kHPJU0T7NI1kvSy_97KSk_zzsvDDA9j9whPiIKeUUJtBBm8YAVCrSriAJesABC6QinVNbvJ-QDzbkRdMGzKfYqd7YZxyNPgyubbjqc85DKGcvry5cYe_ZJjzP6WXQU7Zn_3P1fs8_XlY_1WbXeb93WzrRw3eqpIdb03xMkYCD13tQaqhXdGIGkHmizvaW4Qex8UV7yTEDQGqzsvlRJixR7Pd12KOScf2p80HG06tQjtn2u7uM7sw5k95CmmBeSS5veSxC8TuU0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Probabilistic Analysis of the Game of the Goose</title><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR</source><creator>Groote, Jan Friso ; Wiedijk, Freek ; Zantema, Hans</creator><creatorcontrib>Groote, Jan Friso ; Wiedijk, Freek ; Zantema, Hans</creatorcontrib><description>We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivation to investigate this game came from progress in stochastic process theories, which prompted the question of whether such methods are capable of dealing with well-known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we find that some common wisdom about the game is not true.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/140983781</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>EDUCATION</subject><ispartof>SIAM review, 2016-01, Vol.58 (1), p.143-155</ispartof><rights>Copyright ©2016 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533</citedby><cites>FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24778847$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24778847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,3185,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Groote, Jan Friso</creatorcontrib><creatorcontrib>Wiedijk, Freek</creatorcontrib><creatorcontrib>Zantema, Hans</creatorcontrib><title>A Probabilistic Analysis of the Game of the Goose</title><title>SIAM review</title><description>We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivation to investigate this game came from progress in stochastic process theories, which prompted the question of whether such methods are capable of dealing with well-known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we find that some common wisdom about the game is not true.</description><subject>EDUCATION</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAQhoMoWFcP_gChVw_VmXxNeiyLrsLC7kHPJU0T7NI1kvSy_97KSk_zzsvDDA9j9whPiIKeUUJtBBm8YAVCrSriAJesABC6QinVNbvJ-QDzbkRdMGzKfYqd7YZxyNPgyubbjqc85DKGcvry5cYe_ZJjzP6WXQU7Zn_3P1fs8_XlY_1WbXeb93WzrRw3eqpIdb03xMkYCD13tQaqhXdGIGkHmizvaW4Qex8UV7yTEDQGqzsvlRJixR7Pd12KOScf2p80HG06tQjtn2u7uM7sw5k95CmmBeSS5veSxC8TuU0Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Groote, Jan Friso</creator><creator>Wiedijk, Freek</creator><creator>Zantema, Hans</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>A Probabilistic Analysis of the Game of the Goose</title><author>Groote, Jan Friso ; Wiedijk, Freek ; Zantema, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>EDUCATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groote, Jan Friso</creatorcontrib><creatorcontrib>Wiedijk, Freek</creatorcontrib><creatorcontrib>Zantema, Hans</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groote, Jan Friso</au><au>Wiedijk, Freek</au><au>Zantema, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Analysis of the Game of the Goose</atitle><jtitle>SIAM review</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>58</volume><issue>1</issue><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><abstract>We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivation to investigate this game came from progress in stochastic process theories, which prompted the question of whether such methods are capable of dealing with well-known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we find that some common wisdom about the game is not true.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/140983781</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 2016-01, Vol.58 (1), p.143-155 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_crossref_primary_10_1137_140983781 |
source | LOCUS - SIAM's Online Journal Archive; JSTOR |
subjects | EDUCATION |
title | A Probabilistic Analysis of the Game of the Goose |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Analysis%20of%20the%20Game%20of%20the%20Goose&rft.jtitle=SIAM%20review&rft.au=Groote,%20Jan%20Friso&rft.date=2016-01-01&rft.volume=58&rft.issue=1&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=0036-1445&rft.eissn=1095-7200&rft_id=info:doi/10.1137/140983781&rft_dat=%3Cjstor_cross%3E24778847%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24778847&rfr_iscdi=true |