Loading…

A Probabilistic Analysis of the Game of the Goose

We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivati...

Full description

Saved in:
Bibliographic Details
Published in:SIAM review 2016-01, Vol.58 (1), p.143-155
Main Authors: Groote, Jan Friso, Wiedijk, Freek, Zantema, Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533
cites cdi_FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533
container_end_page 155
container_issue 1
container_start_page 143
container_title SIAM review
container_volume 58
creator Groote, Jan Friso
Wiedijk, Freek
Zantema, Hans
description We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivation to investigate this game came from progress in stochastic process theories, which prompted the question of whether such methods are capable of dealing with well-known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we find that some common wisdom about the game is not true.
doi_str_mv 10.1137/140983781
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_140983781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24778847</jstor_id><sourcerecordid>24778847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533</originalsourceid><addsrcrecordid>eNo9j01LxDAQhoMoWFcP_gChVw_VmXxNeiyLrsLC7kHPJU0T7NI1kvSy_97KSk_zzsvDDA9j9whPiIKeUUJtBBm8YAVCrSriAJesABC6QinVNbvJ-QDzbkRdMGzKfYqd7YZxyNPgyubbjqc85DKGcvry5cYe_ZJjzP6WXQU7Zn_3P1fs8_XlY_1WbXeb93WzrRw3eqpIdb03xMkYCD13tQaqhXdGIGkHmizvaW4Qex8UV7yTEDQGqzsvlRJixR7Pd12KOScf2p80HG06tQjtn2u7uM7sw5k95CmmBeSS5veSxC8TuU0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Probabilistic Analysis of the Game of the Goose</title><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR</source><creator>Groote, Jan Friso ; Wiedijk, Freek ; Zantema, Hans</creator><creatorcontrib>Groote, Jan Friso ; Wiedijk, Freek ; Zantema, Hans</creatorcontrib><description>We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivation to investigate this game came from progress in stochastic process theories, which prompted the question of whether such methods are capable of dealing with well-known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we find that some common wisdom about the game is not true.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/140983781</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>EDUCATION</subject><ispartof>SIAM review, 2016-01, Vol.58 (1), p.143-155</ispartof><rights>Copyright ©2016 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533</citedby><cites>FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24778847$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24778847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,3185,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Groote, Jan Friso</creatorcontrib><creatorcontrib>Wiedijk, Freek</creatorcontrib><creatorcontrib>Zantema, Hans</creatorcontrib><title>A Probabilistic Analysis of the Game of the Goose</title><title>SIAM review</title><description>We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivation to investigate this game came from progress in stochastic process theories, which prompted the question of whether such methods are capable of dealing with well-known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we find that some common wisdom about the game is not true.</description><subject>EDUCATION</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAQhoMoWFcP_gChVw_VmXxNeiyLrsLC7kHPJU0T7NI1kvSy_97KSk_zzsvDDA9j9whPiIKeUUJtBBm8YAVCrSriAJesABC6QinVNbvJ-QDzbkRdMGzKfYqd7YZxyNPgyubbjqc85DKGcvry5cYe_ZJjzP6WXQU7Zn_3P1fs8_XlY_1WbXeb93WzrRw3eqpIdb03xMkYCD13tQaqhXdGIGkHmizvaW4Qex8UV7yTEDQGqzsvlRJixR7Pd12KOScf2p80HG06tQjtn2u7uM7sw5k95CmmBeSS5veSxC8TuU0Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Groote, Jan Friso</creator><creator>Wiedijk, Freek</creator><creator>Zantema, Hans</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>A Probabilistic Analysis of the Game of the Goose</title><author>Groote, Jan Friso ; Wiedijk, Freek ; Zantema, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>EDUCATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groote, Jan Friso</creatorcontrib><creatorcontrib>Wiedijk, Freek</creatorcontrib><creatorcontrib>Zantema, Hans</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groote, Jan Friso</au><au>Wiedijk, Freek</au><au>Zantema, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Analysis of the Game of the Goose</atitle><jtitle>SIAM review</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>58</volume><issue>1</issue><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><abstract>We analyze the traditional board game the Game of the Goose. We are particularly interested in the probabilities of the different players winning, and we show that we can determine these probabilities exactly for up to six players and using simulation for any number of players. Our original motivation to investigate this game came from progress in stochastic process theories, which prompted the question of whether such methods are capable of dealing with well-known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we find that some common wisdom about the game is not true.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/140983781</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 2016-01, Vol.58 (1), p.143-155
issn 0036-1445
1095-7200
language eng
recordid cdi_crossref_primary_10_1137_140983781
source LOCUS - SIAM's Online Journal Archive; JSTOR
subjects EDUCATION
title A Probabilistic Analysis of the Game of the Goose
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Analysis%20of%20the%20Game%20of%20the%20Goose&rft.jtitle=SIAM%20review&rft.au=Groote,%20Jan%20Friso&rft.date=2016-01-01&rft.volume=58&rft.issue=1&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=0036-1445&rft.eissn=1095-7200&rft_id=info:doi/10.1137/140983781&rft_dat=%3Cjstor_cross%3E24778847%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-75bde8727880fd2c960793ec83176c067a2d779311def5252b40f61fa6be45533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24778847&rfr_iscdi=true