Loading…

Supplementation of grape seed and skin extract to orlistat therapy prevents high-fat diet-induced murine spleen lipotoxicity

Spleen is the largest lymphoid organ and obesity is related to an elevated risk of immunity dysfunction. The mechanism whereby fat adversely affects the spleen is poorly understood. This study was designed to assess the effectiveness of grape seed and skin extract (GSSE) and orlistat (Xenical, Xe) o...

Full description

Saved in:
Bibliographic Details
Published in:Applied physiology, nutrition, and metabolism nutrition, and metabolism, 2018-08, Vol.43 (8), p.782-794
Main Authors: Bedhiafi, Takwa, Charradi, Kamel, Azaiz, Mouna Ben, Mahmoudi, Mohamed, Msakni, Issam, Jebari, Khawla, Bouziani, Ammar, Limam, Ferid, Aouani, Ezzedine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spleen is the largest lymphoid organ and obesity is related to an elevated risk of immunity dysfunction. The mechanism whereby fat adversely affects the spleen is poorly understood. This study was designed to assess the effectiveness of grape seed and skin extract (GSSE) and orlistat (Xenical, Xe) on high-fat diet (HFD)-induced spleen lipotoxicity. Obese rats were treated either with GSSE (4 g/kg body weight) or Xe (2 mg/kg body weight) or GSSE+Xe and monitored for weight loss for 3 months. Animals were then sacrificed and their spleen used for the evaluation of lipotoxicity-induced oxidative stress and inflammation as well as the putative protection afforded by GSSE and Xe treatment. HFD induced body weight gain and glycogen accumulation into the spleen; ectopic deposition of cholesterol and triglycerides and an oxidative stress characterized by increased lipoperoxidation and carbonylation; inhibition of antioxidant enzyme activities, such as catalase, glutathione peroxidase, and superoxide dismutase; depletion of zinc and copper; and a concomitant increase in calcium. HFD also increased plasma pro-inflammatory cytokines, such as interleukin (IL)-6, IL-17A, tumour necrosis factor alpha, and C-reactive protein, and decreased plasma IL-10 and adiponectin. Importantly, GSSE counteracted all the deleterious effects of HFD on spleen (i.e., lipotoxicity, oxidative stress, and inflammation) and the best protection was obtained when combining Xe+GSSE. Combining GSSE with Xe prevented against fat-induced spleen lipotoxicity, oxidative stress, and inflammation; this combination may be beneficial in other diseases related to the spleen.
ISSN:1715-5312
1715-5320
DOI:10.1139/apnm-2017-0743