Loading…
Observations and analysis of wide piled foundations
Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe lev...
Saved in:
Published in: | Canadian geotechnical journal 2019-03, Vol.56 (3), p.378-397 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693 |
---|---|
cites | cdi_FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693 |
container_end_page | 397 |
container_issue | 3 |
container_start_page | 378 |
container_title | Canadian geotechnical journal |
container_volume | 56 |
creator | Fellenius, Bengt H |
description | Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe level. Interior piles engage the soil from the pile toe level upward in contrast to a single pile, which engages it from the ground downward. Piles and soil, combined as a pier, have strain compatibility, which determines the distribution of load between the piles, the contact stress, and the load-transfer movement of the piles. The responses between the interior and perimeter piles differ. Particularly so in non-subsiding and subsiding environment, because perimeter piles can be subjected to downdrag and drag forces, while neither downdrag nor drag force will affect the interior piles. In non-subsiding environment, it is advantageous to make perimeter piles shorter, while in subsiding environment perimeter piles best be longer. The load distribution across the raft is also governed by the degree of rigidity of the raft and by the difference in dishing at the pile toe level and in the dishing of the actual raft. |
doi_str_mv | 10.1139/cgj-2018-0031 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1139_cgj_2018_0031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577668460</galeid><sourcerecordid>A577668460</sourcerecordid><originalsourceid>FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693</originalsourceid><addsrcrecordid>eNqV0s9LwzAUB_AgCs7p0XvRk4fOpGmT5jiGPwZDwR_nkCWvNaNru6RT99-bMUEHBZEQksPnPd6DL0LnBI8IoeJal4s4wSSPMabkAA1IgvOYYYIP0QDj8KeMp8foxPsFxiRNk2SA6OPcg3tXnW1qH6nahKuqjbc-aorowxqIWluBiYpmXZsdO0VHhao8nH2_Q_R6e_MyuY9nj3fTyXgWq4zlXSwSLcRcKJKxeU7DYJyCFpppAWA4S02WKkWZZgZzoJwmkCmWc50SYQrMBB2iy13f1jWrNfhOLpq1C-N5mRBBGeE8T39UqSqQti6azim9tF7LccY5Y3nKcFBxjyqhBqeqpoYiLLnvL3q8bu1K_kajHhSOgaXVvV2v9gqC6eCzK9Xaezl9fvqHfejdTrvGeweFbJ1dKreRBMttNmTIhtxmQ26zETze-dppBx6U029_lHwBrLS1_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193617784</pqid></control><display><type>article</type><title>Observations and analysis of wide piled foundations</title><source>Canadian Science Publishing</source><creator>Fellenius, Bengt H</creator><creatorcontrib>Fellenius, Bengt H</creatorcontrib><description>Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe level. Interior piles engage the soil from the pile toe level upward in contrast to a single pile, which engages it from the ground downward. Piles and soil, combined as a pier, have strain compatibility, which determines the distribution of load between the piles, the contact stress, and the load-transfer movement of the piles. The responses between the interior and perimeter piles differ. Particularly so in non-subsiding and subsiding environment, because perimeter piles can be subjected to downdrag and drag forces, while neither downdrag nor drag force will affect the interior piles. In non-subsiding environment, it is advantageous to make perimeter piles shorter, while in subsiding environment perimeter piles best be longer. The load distribution across the raft is also governed by the degree of rigidity of the raft and by the difference in dishing at the pile toe level and in the dishing of the actual raft.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2018-0031</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>Building foundations ; Bulging ; Case histories ; Charge distribution ; Charge transfer ; Compression ; Contact stresses ; Distribution ; Downdrag ; Drag ; Equivalence ; groupes de pieux ; Indoor environments ; Load ; Load distribution ; Load distribution (forces) ; Mechanical properties ; pieux ; pile groups ; Piles ; piles raft ; Pilings (Building) ; radeau de pieu ; Rafting ; Rafts ; Rigidity ; règlement ; répartition de la charge ; settlement ; Soil ; Soil layers ; Soils ; Stress concentration ; Studies ; Subsidence</subject><ispartof>Canadian geotechnical journal, 2019-03, Vol.56 (3), p.378-397</ispartof><rights>COPYRIGHT 2019 NRC Research Press</rights><rights>2019 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693</citedby><cites>FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2018-0031$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2018-0031$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2932,27924,27925,64428,65234</link.rule.ids></links><search><creatorcontrib>Fellenius, Bengt H</creatorcontrib><title>Observations and analysis of wide piled foundations</title><title>Canadian geotechnical journal</title><description>Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe level. Interior piles engage the soil from the pile toe level upward in contrast to a single pile, which engages it from the ground downward. Piles and soil, combined as a pier, have strain compatibility, which determines the distribution of load between the piles, the contact stress, and the load-transfer movement of the piles. The responses between the interior and perimeter piles differ. Particularly so in non-subsiding and subsiding environment, because perimeter piles can be subjected to downdrag and drag forces, while neither downdrag nor drag force will affect the interior piles. In non-subsiding environment, it is advantageous to make perimeter piles shorter, while in subsiding environment perimeter piles best be longer. The load distribution across the raft is also governed by the degree of rigidity of the raft and by the difference in dishing at the pile toe level and in the dishing of the actual raft.</description><subject>Building foundations</subject><subject>Bulging</subject><subject>Case histories</subject><subject>Charge distribution</subject><subject>Charge transfer</subject><subject>Compression</subject><subject>Contact stresses</subject><subject>Distribution</subject><subject>Downdrag</subject><subject>Drag</subject><subject>Equivalence</subject><subject>groupes de pieux</subject><subject>Indoor environments</subject><subject>Load</subject><subject>Load distribution</subject><subject>Load distribution (forces)</subject><subject>Mechanical properties</subject><subject>pieux</subject><subject>pile groups</subject><subject>Piles</subject><subject>piles raft</subject><subject>Pilings (Building)</subject><subject>radeau de pieu</subject><subject>Rafting</subject><subject>Rafts</subject><subject>Rigidity</subject><subject>règlement</subject><subject>répartition de la charge</subject><subject>settlement</subject><subject>Soil</subject><subject>Soil layers</subject><subject>Soils</subject><subject>Stress concentration</subject><subject>Studies</subject><subject>Subsidence</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqV0s9LwzAUB_AgCs7p0XvRk4fOpGmT5jiGPwZDwR_nkCWvNaNru6RT99-bMUEHBZEQksPnPd6DL0LnBI8IoeJal4s4wSSPMabkAA1IgvOYYYIP0QDj8KeMp8foxPsFxiRNk2SA6OPcg3tXnW1qH6nahKuqjbc-aorowxqIWluBiYpmXZsdO0VHhao8nH2_Q_R6e_MyuY9nj3fTyXgWq4zlXSwSLcRcKJKxeU7DYJyCFpppAWA4S02WKkWZZgZzoJwmkCmWc50SYQrMBB2iy13f1jWrNfhOLpq1C-N5mRBBGeE8T39UqSqQti6azim9tF7LccY5Y3nKcFBxjyqhBqeqpoYiLLnvL3q8bu1K_kajHhSOgaXVvV2v9gqC6eCzK9Xaezl9fvqHfejdTrvGeweFbJ1dKreRBMttNmTIhtxmQ26zETze-dppBx6U029_lHwBrLS1_w</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Fellenius, Bengt H</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20190301</creationdate><title>Observations and analysis of wide piled foundations</title><author>Fellenius, Bengt H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Building foundations</topic><topic>Bulging</topic><topic>Case histories</topic><topic>Charge distribution</topic><topic>Charge transfer</topic><topic>Compression</topic><topic>Contact stresses</topic><topic>Distribution</topic><topic>Downdrag</topic><topic>Drag</topic><topic>Equivalence</topic><topic>groupes de pieux</topic><topic>Indoor environments</topic><topic>Load</topic><topic>Load distribution</topic><topic>Load distribution (forces)</topic><topic>Mechanical properties</topic><topic>pieux</topic><topic>pile groups</topic><topic>Piles</topic><topic>piles raft</topic><topic>Pilings (Building)</topic><topic>radeau de pieu</topic><topic>Rafting</topic><topic>Rafts</topic><topic>Rigidity</topic><topic>règlement</topic><topic>répartition de la charge</topic><topic>settlement</topic><topic>Soil</topic><topic>Soil layers</topic><topic>Soils</topic><topic>Stress concentration</topic><topic>Studies</topic><topic>Subsidence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fellenius, Bengt H</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fellenius, Bengt H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observations and analysis of wide piled foundations</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>56</volume><issue>3</issue><spage>378</spage><epage>397</epage><pages>378-397</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe level. Interior piles engage the soil from the pile toe level upward in contrast to a single pile, which engages it from the ground downward. Piles and soil, combined as a pier, have strain compatibility, which determines the distribution of load between the piles, the contact stress, and the load-transfer movement of the piles. The responses between the interior and perimeter piles differ. Particularly so in non-subsiding and subsiding environment, because perimeter piles can be subjected to downdrag and drag forces, while neither downdrag nor drag force will affect the interior piles. In non-subsiding environment, it is advantageous to make perimeter piles shorter, while in subsiding environment perimeter piles best be longer. The load distribution across the raft is also governed by the degree of rigidity of the raft and by the difference in dishing at the pile toe level and in the dishing of the actual raft.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2018-0031</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2019-03, Vol.56 (3), p.378-397 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_crossref_primary_10_1139_cgj_2018_0031 |
source | Canadian Science Publishing |
subjects | Building foundations Bulging Case histories Charge distribution Charge transfer Compression Contact stresses Distribution Downdrag Drag Equivalence groupes de pieux Indoor environments Load Load distribution Load distribution (forces) Mechanical properties pieux pile groups Piles piles raft Pilings (Building) radeau de pieu Rafting Rafts Rigidity règlement répartition de la charge settlement Soil Soil layers Soils Stress concentration Studies Subsidence |
title | Observations and analysis of wide piled foundations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observations%20and%20analysis%20of%20wide%20piled%20foundations&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Fellenius,%20Bengt%20H&rft.date=2019-03-01&rft.volume=56&rft.issue=3&rft.spage=378&rft.epage=397&rft.pages=378-397&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2018-0031&rft_dat=%3Cgale_cross%3EA577668460%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2193617784&rft_id=info:pmid/&rft_galeid=A577668460&rfr_iscdi=true |