Loading…

Observations and analysis of wide piled foundations

Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe lev...

Full description

Saved in:
Bibliographic Details
Published in:Canadian geotechnical journal 2019-03, Vol.56 (3), p.378-397
Main Author: Fellenius, Bengt H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693
cites cdi_FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693
container_end_page 397
container_issue 3
container_start_page 378
container_title Canadian geotechnical journal
container_volume 56
creator Fellenius, Bengt H
description Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe level. Interior piles engage the soil from the pile toe level upward in contrast to a single pile, which engages it from the ground downward. Piles and soil, combined as a pier, have strain compatibility, which determines the distribution of load between the piles, the contact stress, and the load-transfer movement of the piles. The responses between the interior and perimeter piles differ. Particularly so in non-subsiding and subsiding environment, because perimeter piles can be subjected to downdrag and drag forces, while neither downdrag nor drag force will affect the interior piles. In non-subsiding environment, it is advantageous to make perimeter piles shorter, while in subsiding environment perimeter piles best be longer. The load distribution across the raft is also governed by the degree of rigidity of the raft and by the difference in dishing at the pile toe level and in the dishing of the actual raft.
doi_str_mv 10.1139/cgj-2018-0031
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1139_cgj_2018_0031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577668460</galeid><sourcerecordid>A577668460</sourcerecordid><originalsourceid>FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693</originalsourceid><addsrcrecordid>eNqV0s9LwzAUB_AgCs7p0XvRk4fOpGmT5jiGPwZDwR_nkCWvNaNru6RT99-bMUEHBZEQksPnPd6DL0LnBI8IoeJal4s4wSSPMabkAA1IgvOYYYIP0QDj8KeMp8foxPsFxiRNk2SA6OPcg3tXnW1qH6nahKuqjbc-aorowxqIWluBiYpmXZsdO0VHhao8nH2_Q_R6e_MyuY9nj3fTyXgWq4zlXSwSLcRcKJKxeU7DYJyCFpppAWA4S02WKkWZZgZzoJwmkCmWc50SYQrMBB2iy13f1jWrNfhOLpq1C-N5mRBBGeE8T39UqSqQti6azim9tF7LccY5Y3nKcFBxjyqhBqeqpoYiLLnvL3q8bu1K_kajHhSOgaXVvV2v9gqC6eCzK9Xaezl9fvqHfejdTrvGeweFbJ1dKreRBMttNmTIhtxmQ26zETze-dppBx6U029_lHwBrLS1_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193617784</pqid></control><display><type>article</type><title>Observations and analysis of wide piled foundations</title><source>Canadian Science Publishing</source><creator>Fellenius, Bengt H</creator><creatorcontrib>Fellenius, Bengt H</creatorcontrib><description>Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe level. Interior piles engage the soil from the pile toe level upward in contrast to a single pile, which engages it from the ground downward. Piles and soil, combined as a pier, have strain compatibility, which determines the distribution of load between the piles, the contact stress, and the load-transfer movement of the piles. The responses between the interior and perimeter piles differ. Particularly so in non-subsiding and subsiding environment, because perimeter piles can be subjected to downdrag and drag forces, while neither downdrag nor drag force will affect the interior piles. In non-subsiding environment, it is advantageous to make perimeter piles shorter, while in subsiding environment perimeter piles best be longer. The load distribution across the raft is also governed by the degree of rigidity of the raft and by the difference in dishing at the pile toe level and in the dishing of the actual raft.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2018-0031</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>Building foundations ; Bulging ; Case histories ; Charge distribution ; Charge transfer ; Compression ; Contact stresses ; Distribution ; Downdrag ; Drag ; Equivalence ; groupes de pieux ; Indoor environments ; Load ; Load distribution ; Load distribution (forces) ; Mechanical properties ; pieux ; pile groups ; Piles ; piles raft ; Pilings (Building) ; radeau de pieu ; Rafting ; Rafts ; Rigidity ; règlement ; répartition de la charge ; settlement ; Soil ; Soil layers ; Soils ; Stress concentration ; Studies ; Subsidence</subject><ispartof>Canadian geotechnical journal, 2019-03, Vol.56 (3), p.378-397</ispartof><rights>COPYRIGHT 2019 NRC Research Press</rights><rights>2019 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693</citedby><cites>FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2018-0031$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2018-0031$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2932,27924,27925,64428,65234</link.rule.ids></links><search><creatorcontrib>Fellenius, Bengt H</creatorcontrib><title>Observations and analysis of wide piled foundations</title><title>Canadian geotechnical journal</title><description>Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe level. Interior piles engage the soil from the pile toe level upward in contrast to a single pile, which engages it from the ground downward. Piles and soil, combined as a pier, have strain compatibility, which determines the distribution of load between the piles, the contact stress, and the load-transfer movement of the piles. The responses between the interior and perimeter piles differ. Particularly so in non-subsiding and subsiding environment, because perimeter piles can be subjected to downdrag and drag forces, while neither downdrag nor drag force will affect the interior piles. In non-subsiding environment, it is advantageous to make perimeter piles shorter, while in subsiding environment perimeter piles best be longer. The load distribution across the raft is also governed by the degree of rigidity of the raft and by the difference in dishing at the pile toe level and in the dishing of the actual raft.</description><subject>Building foundations</subject><subject>Bulging</subject><subject>Case histories</subject><subject>Charge distribution</subject><subject>Charge transfer</subject><subject>Compression</subject><subject>Contact stresses</subject><subject>Distribution</subject><subject>Downdrag</subject><subject>Drag</subject><subject>Equivalence</subject><subject>groupes de pieux</subject><subject>Indoor environments</subject><subject>Load</subject><subject>Load distribution</subject><subject>Load distribution (forces)</subject><subject>Mechanical properties</subject><subject>pieux</subject><subject>pile groups</subject><subject>Piles</subject><subject>piles raft</subject><subject>Pilings (Building)</subject><subject>radeau de pieu</subject><subject>Rafting</subject><subject>Rafts</subject><subject>Rigidity</subject><subject>règlement</subject><subject>répartition de la charge</subject><subject>settlement</subject><subject>Soil</subject><subject>Soil layers</subject><subject>Soils</subject><subject>Stress concentration</subject><subject>Studies</subject><subject>Subsidence</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqV0s9LwzAUB_AgCs7p0XvRk4fOpGmT5jiGPwZDwR_nkCWvNaNru6RT99-bMUEHBZEQksPnPd6DL0LnBI8IoeJal4s4wSSPMabkAA1IgvOYYYIP0QDj8KeMp8foxPsFxiRNk2SA6OPcg3tXnW1qH6nahKuqjbc-aorowxqIWluBiYpmXZsdO0VHhao8nH2_Q_R6e_MyuY9nj3fTyXgWq4zlXSwSLcRcKJKxeU7DYJyCFpppAWA4S02WKkWZZgZzoJwmkCmWc50SYQrMBB2iy13f1jWrNfhOLpq1C-N5mRBBGeE8T39UqSqQti6azim9tF7LccY5Y3nKcFBxjyqhBqeqpoYiLLnvL3q8bu1K_kajHhSOgaXVvV2v9gqC6eCzK9Xaezl9fvqHfejdTrvGeweFbJ1dKreRBMttNmTIhtxmQ26zETze-dppBx6U029_lHwBrLS1_w</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Fellenius, Bengt H</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20190301</creationdate><title>Observations and analysis of wide piled foundations</title><author>Fellenius, Bengt H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Building foundations</topic><topic>Bulging</topic><topic>Case histories</topic><topic>Charge distribution</topic><topic>Charge transfer</topic><topic>Compression</topic><topic>Contact stresses</topic><topic>Distribution</topic><topic>Downdrag</topic><topic>Drag</topic><topic>Equivalence</topic><topic>groupes de pieux</topic><topic>Indoor environments</topic><topic>Load</topic><topic>Load distribution</topic><topic>Load distribution (forces)</topic><topic>Mechanical properties</topic><topic>pieux</topic><topic>pile groups</topic><topic>Piles</topic><topic>piles raft</topic><topic>Pilings (Building)</topic><topic>radeau de pieu</topic><topic>Rafting</topic><topic>Rafts</topic><topic>Rigidity</topic><topic>règlement</topic><topic>répartition de la charge</topic><topic>settlement</topic><topic>Soil</topic><topic>Soil layers</topic><topic>Soils</topic><topic>Stress concentration</topic><topic>Studies</topic><topic>Subsidence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fellenius, Bengt H</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fellenius, Bengt H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observations and analysis of wide piled foundations</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>56</volume><issue>3</issue><spage>378</spage><epage>397</epage><pages>378-397</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>Available case histories on observations on full-scale piled rafts show that the settlement response to applied load can be modeled as that for an Equivalent Pier due to compression of the piles and the soil matrix plus that of an Equivalent Raft for compression of soil layers below the pile toe level. Interior piles engage the soil from the pile toe level upward in contrast to a single pile, which engages it from the ground downward. Piles and soil, combined as a pier, have strain compatibility, which determines the distribution of load between the piles, the contact stress, and the load-transfer movement of the piles. The responses between the interior and perimeter piles differ. Particularly so in non-subsiding and subsiding environment, because perimeter piles can be subjected to downdrag and drag forces, while neither downdrag nor drag force will affect the interior piles. In non-subsiding environment, it is advantageous to make perimeter piles shorter, while in subsiding environment perimeter piles best be longer. The load distribution across the raft is also governed by the degree of rigidity of the raft and by the difference in dishing at the pile toe level and in the dishing of the actual raft.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2018-0031</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2019-03, Vol.56 (3), p.378-397
issn 0008-3674
1208-6010
language eng
recordid cdi_crossref_primary_10_1139_cgj_2018_0031
source Canadian Science Publishing
subjects Building foundations
Bulging
Case histories
Charge distribution
Charge transfer
Compression
Contact stresses
Distribution
Downdrag
Drag
Equivalence
groupes de pieux
Indoor environments
Load
Load distribution
Load distribution (forces)
Mechanical properties
pieux
pile groups
Piles
piles raft
Pilings (Building)
radeau de pieu
Rafting
Rafts
Rigidity
règlement
répartition de la charge
settlement
Soil
Soil layers
Soils
Stress concentration
Studies
Subsidence
title Observations and analysis of wide piled foundations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observations%20and%20analysis%20of%20wide%20piled%20foundations&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Fellenius,%20Bengt%20H&rft.date=2019-03-01&rft.volume=56&rft.issue=3&rft.spage=378&rft.epage=397&rft.pages=378-397&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2018-0031&rft_dat=%3Cgale_cross%3EA577668460%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a568t-92c99b9a156b8320173ec9c6c9eed764d54aa36c6d07e3732e5a687c419df0693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2193617784&rft_id=info:pmid/&rft_galeid=A577668460&rfr_iscdi=true