Loading…

Dispersal and productivity of Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon colonizing newly accessible habitat

Following construction of a fish ladder at Landsburg Diversion Dam on the Cedar River, Washington, USA, in fall 2003, we used DNA-based parentage to identify second generation Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon as recruits that were produced above the dam or “s...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of fisheries and aquatic sciences 2015-03, Vol.72 (3), p.454-465
Main Authors: Anderson, Joseph H, Faulds, Paul L, Burton, Karl D, Koehler, Michele E, Atlas, William I, Quinn, Thomas P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Following construction of a fish ladder at Landsburg Diversion Dam on the Cedar River, Washington, USA, in fall 2003, we used DNA-based parentage to identify second generation Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon as recruits that were produced above the dam or “strays” dispersing into the new habitat that were produced elsewhere. For both species, strays colonized immediately but decreased as a proportion of the total run over time. Chinook salmon strays were more numerous in years when the species was more abundant below the dam and included a much larger proportion of hatchery origin salmon than did coho salmon. Productivity, calculated as the ratio of female recruits sampled at the dam to female spawners, exceeded replacement in all four coho salmon cohorts but only two of five Chinook salmon cohorts, leading to more rapid population expansion of coho salmon. However, estimates of fishing mortality and recruitment into the Cedar River below the dam substantially increased Chinook salmon productivity estimates. Our results demonstrate that Pacific salmon are capable of rapidly recolonizing habitat made accessible by restoration and emphasize the importance of demographic exchange with preexisting populations during the transition from recolonization to self-sustainability.
ISSN:0706-652X
1205-7533
DOI:10.1139/cjfas-2014-0180