Loading…
Deleterious effects of net clogging on the quantification of stream drift
Drift studies are central to stream and river ecological research. However, a fundamental aspect of quantifying drift — how net clogging affects the accuracy of results — has been widely ignored. Utilizing approaches from plankton and suspended sediment studies in oceanography and hydrology, we exam...
Saved in:
Published in: | Canadian journal of fisheries and aquatic sciences 2017-07, Vol.74 (7), p.1041-1048 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drift studies are central to stream and river ecological research. However, a fundamental aspect of quantifying drift — how net clogging affects the accuracy of results — has been widely ignored. Utilizing approaches from plankton and suspended sediment studies in oceanography and hydrology, we examined the rate and dynamics of net clogging across a range of conditions. We found that nets clog nonlinearly over time and that suspended solid concentrations and net mesh size exerted a strong effect on clogging rates. Critically, net clogging introduced unpredictable biases in resultant data due to the inaccuracies in water volume estimates introduced by progressive clogging. This renders the widespread approach to linearly “correct” for clogging inadequate. Using a meta-analysis of 77 drift studies spanning 25 years, we demonstrate that the detrimental effects of net clogging are routinely unappreciated, even though the results of most of these studies were likely affected by clogging. We close by describing an approach for avoiding net clogging, which will increase the accuracy and reproducibility of results in future freshwater, lotic drift studies. |
---|---|
ISSN: | 0706-652X 1205-7533 |
DOI: | 10.1139/cjfas-2016-0365 |