Loading…
Phase diagram of the 3D bimodal random-field Ising model
. The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL...
Saved in:
Published in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2008, Vol.61 (1), p.111-120 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-fb51ab320202959b3bd4e0088ca9be0f8b2c2e481eda8fe705022ae5324ae4ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-fb51ab320202959b3bd4e0088ca9be0f8b2c2e481eda8fe705022ae5324ae4ce3 |
container_end_page | 120 |
container_issue | 1 |
container_start_page | 111 |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 61 |
creator | Fytas, N. G. Malakis, A. |
description | .
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL implementations, by handling the final stage of the WL process as an entropic sampling scheme, appropriate for the recording of the required two-parametric histograms. We test the accuracy of the proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder strength and the associated correlation length's exponent, in agreement with previous estimates from ground-state studies of the model. |
doi_str_mv | 10.1140/epjb/e2008-00039-7 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1140_epjb_e2008_00039_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20118956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-fb51ab320202959b3bd4e0088ca9be0f8b2c2e481eda8fe705022ae5324ae4ce3</originalsourceid><addsrcrecordid>eNp9j7lOAzEQhi0EEiHwAlRuKE3Gx268JQpXpEhQQG2Nd8fJRntEdih4e0yCUqIpZqT_0HyM3Uq4l9LAjHZbPyMFYAUA6ErMz9hEGm1ECbo8P93KXrKrlLbZJEtpJsy-bzARb1pcR-z5GPh-Q1w_ct_2Y4Mdjzg0Yy9CS13Dl6kd1jwL1F2zi4Bdopu_PWWfz08fi1exentZLh5WotZK7kXwhUSvFeSpispr3xjKb9oaK08QrFe1ImMlNWgDzaEApZAKrQySqUlPmTr21nFMKVJwu9j2GL-dBPfL7n7Z3YHdHdjdPIfujqEdphq7kCHqNp2SCqS0VVFmnz76UpaGNUW3Hb_ikHn-a_8B3BdqYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase diagram of the 3D bimodal random-field Ising model</title><source>Springer Nature</source><creator>Fytas, N. G. ; Malakis, A.</creator><creatorcontrib>Fytas, N. G. ; Malakis, A.</creatorcontrib><description>.
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL implementations, by handling the final stage of the WL process as an entropic sampling scheme, appropriate for the recording of the required two-parametric histograms. We test the accuracy of the proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder strength and the associated correlation length's exponent, in agreement with previous estimates from ground-state studies of the model.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2008-00039-7</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Complex Systems ; Condensed Matter Physics ; Exact sciences and technology ; Fluid- and Aerodynamics ; Phase transitions: general studies ; Physics ; Physics and Astronomy ; Solid State Physics ; Statistical and Nonlinear Physics ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Thermodynamics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2008, Vol.61 (1), p.111-120</ispartof><rights>EDP Sciences/SocietĂ Italiana di Fisica/Springer-Verlag 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-fb51ab320202959b3bd4e0088ca9be0f8b2c2e481eda8fe705022ae5324ae4ce3</citedby><cites>FETCH-LOGICAL-c321t-fb51ab320202959b3bd4e0088ca9be0f8b2c2e481eda8fe705022ae5324ae4ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20118956$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fytas, N. G.</creatorcontrib><creatorcontrib>Malakis, A.</creatorcontrib><title>Phase diagram of the 3D bimodal random-field Ising model</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>.
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL implementations, by handling the final stage of the WL process as an entropic sampling scheme, appropriate for the recording of the required two-parametric histograms. We test the accuracy of the proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder strength and the associated correlation length's exponent, in agreement with previous estimates from ground-state studies of the model.</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Exact sciences and technology</subject><subject>Fluid- and Aerodynamics</subject><subject>Phase transitions: general studies</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid State Physics</subject><subject>Statistical and Nonlinear Physics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Thermodynamics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9j7lOAzEQhi0EEiHwAlRuKE3Gx268JQpXpEhQQG2Nd8fJRntEdih4e0yCUqIpZqT_0HyM3Uq4l9LAjHZbPyMFYAUA6ErMz9hEGm1ECbo8P93KXrKrlLbZJEtpJsy-bzARb1pcR-z5GPh-Q1w_ct_2Y4Mdjzg0Yy9CS13Dl6kd1jwL1F2zi4Bdopu_PWWfz08fi1exentZLh5WotZK7kXwhUSvFeSpispr3xjKb9oaK08QrFe1ImMlNWgDzaEApZAKrQySqUlPmTr21nFMKVJwu9j2GL-dBPfL7n7Z3YHdHdjdPIfujqEdphq7kCHqNp2SCqS0VVFmnz76UpaGNUW3Hb_ikHn-a_8B3BdqYw</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Fytas, N. G.</creator><creator>Malakis, A.</creator><general>EDP Sciences</general><general>Springer</general><general>EDP sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2008</creationdate><title>Phase diagram of the 3D bimodal random-field Ising model</title><author>Fytas, N. G. ; Malakis, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-fb51ab320202959b3bd4e0088ca9be0f8b2c2e481eda8fe705022ae5324ae4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Exact sciences and technology</topic><topic>Fluid- and Aerodynamics</topic><topic>Phase transitions: general studies</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid State Physics</topic><topic>Statistical and Nonlinear Physics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fytas, N. G.</creatorcontrib><creatorcontrib>Malakis, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fytas, N. G.</au><au>Malakis, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase diagram of the 3D bimodal random-field Ising model</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2008</date><risdate>2008</risdate><volume>61</volume><issue>1</issue><spage>111</spage><epage>120</epage><pages>111-120</pages><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>.
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL implementations, by handling the final stage of the WL process as an entropic sampling scheme, appropriate for the recording of the required two-parametric histograms. We test the accuracy of the proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder strength and the associated correlation length's exponent, in agreement with previous estimates from ground-state studies of the model.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1140/epjb/e2008-00039-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2008, Vol.61 (1), p.111-120 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_crossref_primary_10_1140_epjb_e2008_00039_7 |
source | Springer Nature |
subjects | Complex Systems Condensed Matter Physics Exact sciences and technology Fluid- and Aerodynamics Phase transitions: general studies Physics Physics and Astronomy Solid State Physics Statistical and Nonlinear Physics Statistical physics, thermodynamics, and nonlinear dynamical systems Thermodynamics |
title | Phase diagram of the 3D bimodal random-field Ising model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20diagram%20of%20the%203D%20bimodal%20random-field%20Ising%20model&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Fytas,%20N.%20G.&rft.date=2008&rft.volume=61&rft.issue=1&rft.spage=111&rft.epage=120&rft.pages=111-120&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2008-00039-7&rft_dat=%3Cpascalfrancis_cross%3E20118956%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-fb51ab320202959b3bd4e0088ca9be0f8b2c2e481eda8fe705022ae5324ae4ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |