Loading…
Topics in the theory of amorphous materials
In this Colloquium, I describe some current frontiers in the physics of semiconducting amorphous materials and glasses, including a short, but self-contained discussion of techniques for creating computer models, among them the quench from the melt method, the Activation-Relaxation Technique, the de...
Saved in:
Published in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2009-03, Vol.68 (1), p.1-21 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this Colloquium, I describe some current frontiers in the physics of semiconducting amorphous materials and glasses, including a short, but self-contained discussion of techniques for creating computer models, among them the quench from the melt method, the Activation-Relaxation Technique, the decorate and relax method, and the experimentally constrained molecular relaxation scheme. A representative study of an interesting and important glass (amorphous GeSe
3
:Ag) is provided. This material is a fast-ion conductor and a serious candidate to replace current FLASH memory. Next, I discuss the effects of topological disorder on electronic states. By computing the decay of the density matrix in real space, and also computing well-localized Wannier functions, we close with a quantitative discussion of Kohn’s
Principle of Nearsightedness
in amorphous silicon. |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/e2009-00080-0 |