Loading…

Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field

We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199 Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magne...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2015-10, Vol.69 (10), Article 225
Main Authors: Afach, S., Baker, C. A., Ban, G., Bison, G., Bodek, K., Chowdhuri, Z., Daum, M., Fertl, M., Franke, B., Geltenbort, P., Green, K., van der Grinten, M. G. D., Grujic, Z., Harris, P. G., Heil, W., Hélaine, V., Henneck, R., Horras, M., Iaydjiev, P., Ivanov, S. N., Kasprzak, M., Kermaïdic, Y., Kirch, K., Knowles, P., Koch, H.-C., Komposch, S., Kozela, A., Krempel, J., Lauss, B., Lefort, T., Lemière, Y., Mtchedlishvili, A., Naviliat-Cuncic, O., Pendlebury, J. M., Piegsa, F. M., Pignol, G., Prashant, P. N., Quéméner, G., Rebreyend, D., Ries, D., Roccia, S., Schmidt-Wellenburg, P., Severijns, N., Weis, A., Wursten, E., Wyszynski, G., Zejma, J., Zenner, J., Zsigmond, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-158233a8d6d6a0f5e09be44f47379088fe2a8847942b40d27bf2fe86c9e1c5d73
cites cdi_FETCH-LOGICAL-c221t-158233a8d6d6a0f5e09be44f47379088fe2a8847942b40d27bf2fe86c9e1c5d73
container_end_page
container_issue 10
container_start_page
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 69
creator Afach, S.
Baker, C. A.
Ban, G.
Bison, G.
Bodek, K.
Chowdhuri, Z.
Daum, M.
Fertl, M.
Franke, B.
Geltenbort, P.
Green, K.
van der Grinten, M. G. D.
Grujic, Z.
Harris, P. G.
Heil, W.
Hélaine, V.
Henneck, R.
Horras, M.
Iaydjiev, P.
Ivanov, S. N.
Kasprzak, M.
Kermaïdic, Y.
Kirch, K.
Knowles, P.
Koch, H.-C.
Komposch, S.
Kozela, A.
Krempel, J.
Lauss, B.
Lefort, T.
Lemière, Y.
Mtchedlishvili, A.
Naviliat-Cuncic, O.
Pendlebury, J. M.
Piegsa, F. M.
Pignol, G.
Prashant, P. N.
Quéméner, G.
Rebreyend, D.
Ries, D.
Roccia, S.
Schmidt-Wellenburg, P.
Severijns, N.
Weis, A.
Wursten, E.
Wyszynski, G.
Zejma, J.
Zenner, J.
Zsigmond, G.
description We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199 Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations. Graphical abstract
doi_str_mv 10.1140/epjd/e2015-60207-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1140_epjd_e2015_60207_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1140_epjd_e2015_60207_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-158233a8d6d6a0f5e09be44f47379088fe2a8847942b40d27bf2fe86c9e1c5d73</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwA5z8A6G248T2EVVAKxVxgbPlxuuQKrYjO5Xg70lTxJHT7kozs5qH0D0lD5RysoLhYFfACK2KmjAiCn6BFpSXfDqFuvzba3KNbnI-EEJYxesFGl7B5GMCD2HE0WGDnekzYOihGVPXYNsNsQfs46zIXRtMj12KHlOlNi02Y_QZw9cQM1g8RmwC7sJn9LGFAPGYsTdtgHGKch309hZdzR_ufucSfTw_va83xe7tZbt-3BUNY3QsaCVZWRppa1sb4iogag-cOy5KoYiUDpiRkgvF2Z4Ty8TeMQeybhTQprKiXCJ2zm1SzDmB00PqvEnfmhJ9YqZPzPTMTM_MNJ9M5dmUJ3FoIelDPKapcf7P9QNPxHKP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field</title><source>Springer Link</source><creator>Afach, S. ; Baker, C. A. ; Ban, G. ; Bison, G. ; Bodek, K. ; Chowdhuri, Z. ; Daum, M. ; Fertl, M. ; Franke, B. ; Geltenbort, P. ; Green, K. ; van der Grinten, M. G. D. ; Grujic, Z. ; Harris, P. G. ; Heil, W. ; Hélaine, V. ; Henneck, R. ; Horras, M. ; Iaydjiev, P. ; Ivanov, S. N. ; Kasprzak, M. ; Kermaïdic, Y. ; Kirch, K. ; Knowles, P. ; Koch, H.-C. ; Komposch, S. ; Kozela, A. ; Krempel, J. ; Lauss, B. ; Lefort, T. ; Lemière, Y. ; Mtchedlishvili, A. ; Naviliat-Cuncic, O. ; Pendlebury, J. M. ; Piegsa, F. M. ; Pignol, G. ; Prashant, P. N. ; Quéméner, G. ; Rebreyend, D. ; Ries, D. ; Roccia, S. ; Schmidt-Wellenburg, P. ; Severijns, N. ; Weis, A. ; Wursten, E. ; Wyszynski, G. ; Zejma, J. ; Zenner, J. ; Zsigmond, G.</creator><creatorcontrib>Afach, S. ; Baker, C. A. ; Ban, G. ; Bison, G. ; Bodek, K. ; Chowdhuri, Z. ; Daum, M. ; Fertl, M. ; Franke, B. ; Geltenbort, P. ; Green, K. ; van der Grinten, M. G. D. ; Grujic, Z. ; Harris, P. G. ; Heil, W. ; Hélaine, V. ; Henneck, R. ; Horras, M. ; Iaydjiev, P. ; Ivanov, S. N. ; Kasprzak, M. ; Kermaïdic, Y. ; Kirch, K. ; Knowles, P. ; Koch, H.-C. ; Komposch, S. ; Kozela, A. ; Krempel, J. ; Lauss, B. ; Lefort, T. ; Lemière, Y. ; Mtchedlishvili, A. ; Naviliat-Cuncic, O. ; Pendlebury, J. M. ; Piegsa, F. M. ; Pignol, G. ; Prashant, P. N. ; Quéméner, G. ; Rebreyend, D. ; Ries, D. ; Roccia, S. ; Schmidt-Wellenburg, P. ; Severijns, N. ; Weis, A. ; Wursten, E. ; Wyszynski, G. ; Zejma, J. ; Zenner, J. ; Zsigmond, G.</creatorcontrib><description>We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199 Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations. Graphical abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/e2015-60207-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Molecular ; Optical and Plasma Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Quantum Physics ; Regular Article ; Spectroscopy/Spectrometry ; Spintronics</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2015-10, Vol.69 (10), Article 225</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-158233a8d6d6a0f5e09be44f47379088fe2a8847942b40d27bf2fe86c9e1c5d73</citedby><cites>FETCH-LOGICAL-c221t-158233a8d6d6a0f5e09be44f47379088fe2a8847942b40d27bf2fe86c9e1c5d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Afach, S.</creatorcontrib><creatorcontrib>Baker, C. A.</creatorcontrib><creatorcontrib>Ban, G.</creatorcontrib><creatorcontrib>Bison, G.</creatorcontrib><creatorcontrib>Bodek, K.</creatorcontrib><creatorcontrib>Chowdhuri, Z.</creatorcontrib><creatorcontrib>Daum, M.</creatorcontrib><creatorcontrib>Fertl, M.</creatorcontrib><creatorcontrib>Franke, B.</creatorcontrib><creatorcontrib>Geltenbort, P.</creatorcontrib><creatorcontrib>Green, K.</creatorcontrib><creatorcontrib>van der Grinten, M. G. D.</creatorcontrib><creatorcontrib>Grujic, Z.</creatorcontrib><creatorcontrib>Harris, P. G.</creatorcontrib><creatorcontrib>Heil, W.</creatorcontrib><creatorcontrib>Hélaine, V.</creatorcontrib><creatorcontrib>Henneck, R.</creatorcontrib><creatorcontrib>Horras, M.</creatorcontrib><creatorcontrib>Iaydjiev, P.</creatorcontrib><creatorcontrib>Ivanov, S. N.</creatorcontrib><creatorcontrib>Kasprzak, M.</creatorcontrib><creatorcontrib>Kermaïdic, Y.</creatorcontrib><creatorcontrib>Kirch, K.</creatorcontrib><creatorcontrib>Knowles, P.</creatorcontrib><creatorcontrib>Koch, H.-C.</creatorcontrib><creatorcontrib>Komposch, S.</creatorcontrib><creatorcontrib>Kozela, A.</creatorcontrib><creatorcontrib>Krempel, J.</creatorcontrib><creatorcontrib>Lauss, B.</creatorcontrib><creatorcontrib>Lefort, T.</creatorcontrib><creatorcontrib>Lemière, Y.</creatorcontrib><creatorcontrib>Mtchedlishvili, A.</creatorcontrib><creatorcontrib>Naviliat-Cuncic, O.</creatorcontrib><creatorcontrib>Pendlebury, J. M.</creatorcontrib><creatorcontrib>Piegsa, F. M.</creatorcontrib><creatorcontrib>Pignol, G.</creatorcontrib><creatorcontrib>Prashant, P. N.</creatorcontrib><creatorcontrib>Quéméner, G.</creatorcontrib><creatorcontrib>Rebreyend, D.</creatorcontrib><creatorcontrib>Ries, D.</creatorcontrib><creatorcontrib>Roccia, S.</creatorcontrib><creatorcontrib>Schmidt-Wellenburg, P.</creatorcontrib><creatorcontrib>Severijns, N.</creatorcontrib><creatorcontrib>Weis, A.</creatorcontrib><creatorcontrib>Wursten, E.</creatorcontrib><creatorcontrib>Wyszynski, G.</creatorcontrib><creatorcontrib>Zejma, J.</creatorcontrib><creatorcontrib>Zenner, J.</creatorcontrib><creatorcontrib>Zsigmond, G.</creatorcontrib><title>Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199 Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations. Graphical abstract</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Regular Article</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwA5z8A6G248T2EVVAKxVxgbPlxuuQKrYjO5Xg70lTxJHT7kozs5qH0D0lD5RysoLhYFfACK2KmjAiCn6BFpSXfDqFuvzba3KNbnI-EEJYxesFGl7B5GMCD2HE0WGDnekzYOihGVPXYNsNsQfs46zIXRtMj12KHlOlNi02Y_QZw9cQM1g8RmwC7sJn9LGFAPGYsTdtgHGKch309hZdzR_ufucSfTw_va83xe7tZbt-3BUNY3QsaCVZWRppa1sb4iogag-cOy5KoYiUDpiRkgvF2Z4Ty8TeMQeybhTQprKiXCJ2zm1SzDmB00PqvEnfmhJ9YqZPzPTMTM_MNJ9M5dmUJ3FoIelDPKapcf7P9QNPxHKP</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Afach, S.</creator><creator>Baker, C. A.</creator><creator>Ban, G.</creator><creator>Bison, G.</creator><creator>Bodek, K.</creator><creator>Chowdhuri, Z.</creator><creator>Daum, M.</creator><creator>Fertl, M.</creator><creator>Franke, B.</creator><creator>Geltenbort, P.</creator><creator>Green, K.</creator><creator>van der Grinten, M. G. D.</creator><creator>Grujic, Z.</creator><creator>Harris, P. G.</creator><creator>Heil, W.</creator><creator>Hélaine, V.</creator><creator>Henneck, R.</creator><creator>Horras, M.</creator><creator>Iaydjiev, P.</creator><creator>Ivanov, S. N.</creator><creator>Kasprzak, M.</creator><creator>Kermaïdic, Y.</creator><creator>Kirch, K.</creator><creator>Knowles, P.</creator><creator>Koch, H.-C.</creator><creator>Komposch, S.</creator><creator>Kozela, A.</creator><creator>Krempel, J.</creator><creator>Lauss, B.</creator><creator>Lefort, T.</creator><creator>Lemière, Y.</creator><creator>Mtchedlishvili, A.</creator><creator>Naviliat-Cuncic, O.</creator><creator>Pendlebury, J. M.</creator><creator>Piegsa, F. M.</creator><creator>Pignol, G.</creator><creator>Prashant, P. N.</creator><creator>Quéméner, G.</creator><creator>Rebreyend, D.</creator><creator>Ries, D.</creator><creator>Roccia, S.</creator><creator>Schmidt-Wellenburg, P.</creator><creator>Severijns, N.</creator><creator>Weis, A.</creator><creator>Wursten, E.</creator><creator>Wyszynski, G.</creator><creator>Zejma, J.</creator><creator>Zenner, J.</creator><creator>Zsigmond, G.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151006</creationdate><title>Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field</title><author>Afach, S. ; Baker, C. A. ; Ban, G. ; Bison, G. ; Bodek, K. ; Chowdhuri, Z. ; Daum, M. ; Fertl, M. ; Franke, B. ; Geltenbort, P. ; Green, K. ; van der Grinten, M. G. D. ; Grujic, Z. ; Harris, P. G. ; Heil, W. ; Hélaine, V. ; Henneck, R. ; Horras, M. ; Iaydjiev, P. ; Ivanov, S. N. ; Kasprzak, M. ; Kermaïdic, Y. ; Kirch, K. ; Knowles, P. ; Koch, H.-C. ; Komposch, S. ; Kozela, A. ; Krempel, J. ; Lauss, B. ; Lefort, T. ; Lemière, Y. ; Mtchedlishvili, A. ; Naviliat-Cuncic, O. ; Pendlebury, J. M. ; Piegsa, F. M. ; Pignol, G. ; Prashant, P. N. ; Quéméner, G. ; Rebreyend, D. ; Ries, D. ; Roccia, S. ; Schmidt-Wellenburg, P. ; Severijns, N. ; Weis, A. ; Wursten, E. ; Wyszynski, G. ; Zejma, J. ; Zenner, J. ; Zsigmond, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-158233a8d6d6a0f5e09be44f47379088fe2a8847942b40d27bf2fe86c9e1c5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Regular Article</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afach, S.</creatorcontrib><creatorcontrib>Baker, C. A.</creatorcontrib><creatorcontrib>Ban, G.</creatorcontrib><creatorcontrib>Bison, G.</creatorcontrib><creatorcontrib>Bodek, K.</creatorcontrib><creatorcontrib>Chowdhuri, Z.</creatorcontrib><creatorcontrib>Daum, M.</creatorcontrib><creatorcontrib>Fertl, M.</creatorcontrib><creatorcontrib>Franke, B.</creatorcontrib><creatorcontrib>Geltenbort, P.</creatorcontrib><creatorcontrib>Green, K.</creatorcontrib><creatorcontrib>van der Grinten, M. G. D.</creatorcontrib><creatorcontrib>Grujic, Z.</creatorcontrib><creatorcontrib>Harris, P. G.</creatorcontrib><creatorcontrib>Heil, W.</creatorcontrib><creatorcontrib>Hélaine, V.</creatorcontrib><creatorcontrib>Henneck, R.</creatorcontrib><creatorcontrib>Horras, M.</creatorcontrib><creatorcontrib>Iaydjiev, P.</creatorcontrib><creatorcontrib>Ivanov, S. N.</creatorcontrib><creatorcontrib>Kasprzak, M.</creatorcontrib><creatorcontrib>Kermaïdic, Y.</creatorcontrib><creatorcontrib>Kirch, K.</creatorcontrib><creatorcontrib>Knowles, P.</creatorcontrib><creatorcontrib>Koch, H.-C.</creatorcontrib><creatorcontrib>Komposch, S.</creatorcontrib><creatorcontrib>Kozela, A.</creatorcontrib><creatorcontrib>Krempel, J.</creatorcontrib><creatorcontrib>Lauss, B.</creatorcontrib><creatorcontrib>Lefort, T.</creatorcontrib><creatorcontrib>Lemière, Y.</creatorcontrib><creatorcontrib>Mtchedlishvili, A.</creatorcontrib><creatorcontrib>Naviliat-Cuncic, O.</creatorcontrib><creatorcontrib>Pendlebury, J. M.</creatorcontrib><creatorcontrib>Piegsa, F. M.</creatorcontrib><creatorcontrib>Pignol, G.</creatorcontrib><creatorcontrib>Prashant, P. N.</creatorcontrib><creatorcontrib>Quéméner, G.</creatorcontrib><creatorcontrib>Rebreyend, D.</creatorcontrib><creatorcontrib>Ries, D.</creatorcontrib><creatorcontrib>Roccia, S.</creatorcontrib><creatorcontrib>Schmidt-Wellenburg, P.</creatorcontrib><creatorcontrib>Severijns, N.</creatorcontrib><creatorcontrib>Weis, A.</creatorcontrib><creatorcontrib>Wursten, E.</creatorcontrib><creatorcontrib>Wyszynski, G.</creatorcontrib><creatorcontrib>Zejma, J.</creatorcontrib><creatorcontrib>Zenner, J.</creatorcontrib><creatorcontrib>Zsigmond, G.</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afach, S.</au><au>Baker, C. A.</au><au>Ban, G.</au><au>Bison, G.</au><au>Bodek, K.</au><au>Chowdhuri, Z.</au><au>Daum, M.</au><au>Fertl, M.</au><au>Franke, B.</au><au>Geltenbort, P.</au><au>Green, K.</au><au>van der Grinten, M. G. D.</au><au>Grujic, Z.</au><au>Harris, P. G.</au><au>Heil, W.</au><au>Hélaine, V.</au><au>Henneck, R.</au><au>Horras, M.</au><au>Iaydjiev, P.</au><au>Ivanov, S. N.</au><au>Kasprzak, M.</au><au>Kermaïdic, Y.</au><au>Kirch, K.</au><au>Knowles, P.</au><au>Koch, H.-C.</au><au>Komposch, S.</au><au>Kozela, A.</au><au>Krempel, J.</au><au>Lauss, B.</au><au>Lefort, T.</au><au>Lemière, Y.</au><au>Mtchedlishvili, A.</au><au>Naviliat-Cuncic, O.</au><au>Pendlebury, J. M.</au><au>Piegsa, F. M.</au><au>Pignol, G.</au><au>Prashant, P. N.</au><au>Quéméner, G.</au><au>Rebreyend, D.</au><au>Ries, D.</au><au>Roccia, S.</au><au>Schmidt-Wellenburg, P.</au><au>Severijns, N.</au><au>Weis, A.</au><au>Wursten, E.</au><au>Wyszynski, G.</au><au>Zejma, J.</au><au>Zenner, J.</au><au>Zsigmond, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2015-10-06</date><risdate>2015</risdate><volume>69</volume><issue>10</issue><artnum>225</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199 Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/e2015-60207-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2015-10, Vol.69 (10), Article 225
issn 1434-6060
1434-6079
language eng
recordid cdi_crossref_primary_10_1140_epjd_e2015_60207_4
source Springer Link
subjects Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Molecular
Optical and Plasma Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Information Technology
Quantum Physics
Regular Article
Spectroscopy/Spectrometry
Spintronics
title Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20a%20false%20electric%20dipole%20moment%20signal%20from%20199Hg%20atoms%20exposed%20to%20an%20inhomogeneous%20magnetic%20field&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Afach,%20S.&rft.date=2015-10-06&rft.volume=69&rft.issue=10&rft.artnum=225&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/e2015-60207-4&rft_dat=%3Ccrossref_sprin%3E10_1140_epjd_e2015_60207_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-158233a8d6d6a0f5e09be44f47379088fe2a8847942b40d27bf2fe86c9e1c5d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true