Loading…

Individual and collective dynamics of self-propelled soft particles

Deformable self-propelled particles provide us with one of the most important nonlinear dissipative systems, which are related, for example, to the motion of microorganisms. It is emphasized that this is a subject of localized objects in non-equilibrium open systems. We introduce a coupled set of or...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Special topics, 2014-01, Vol.223 (1), p.121-139
Main Authors: Tarama, M., Itino, Y., Menzel, A.M., Ohta, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deformable self-propelled particles provide us with one of the most important nonlinear dissipative systems, which are related, for example, to the motion of microorganisms. It is emphasized that this is a subject of localized objects in non-equilibrium open systems. We introduce a coupled set of ordinary differential equations to study various dynamics of individual soft particles due to the nonlinear couplings between migration, spinning and deformation. By introducing interactions among the particles, the collective dynamics and its collapse are also investigated by changing the particle density and the interaction strength. We stress that assemblies of self-propelled particles also exhibit a variety of non-equilibrium localized patterns. It is our great pleasure to dedicate the present article to Professor Helmut R. Brand on the occasion of his sixtieth birthday. Professor Brand has made outstanding efforts for the scientific interaction in the field of non-linear and non-equilibrium physics between Japan and Germany for the past thirty years.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjst/e2014-02088-y