Loading…
Efficient exploration of electronic and dielectric properties using advanced first-principles analysis grounded in modern theory of polarization: Application to PbTiO 3
Electronic and dielectric properties are essential for understanding many functional materials, predicting their behavior and optimizing their performance across different shapes, geometries and scales. Several approaches were developed and explored to investigate more or less deeply the appropriate...
Saved in:
Published in: | Journal of advanced dielectrics 2024-07 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electronic and dielectric properties are essential for understanding many functional materials, predicting their behavior and optimizing their performance across different shapes, geometries and scales. Several approaches were developed and explored to investigate more or less deeply the appropriate properties. One of the most appealing, accurate and efficient approach is first principle simulations based on modern theory of polarization. Especially with the increased availability of powerful computational resources and techniques. Building upon these advancements, our contribution aims to elucidate an efficient methodology for studying electronic and dielectric properties by applying the Berry phase and Maximally Localized Wannier functions methods. Our exploration will initially focus on a systematic study of the electronic, chemical bonding, ferroelectric and piezoelectric properties of the well-known prototypical bulk system PbTiO 3 . Subsequently, we will extend our study to examine slab properties as surface termination and slab thickness effect on electronic properties, utilizing the robust Wannier-justified Tight Binding model. |
---|---|
ISSN: | 2010-135X 2010-1368 |
DOI: | 10.1142/S2010135X24500206 |