Loading…
Analytical Modeling of Realistic Single-Electron Transistors Based on Metal-Oxide-Semiconductor Structure with a Unique Distribution Function in the Coulomb-Blockade Oscillation Region
Novel metal-oxide-semiconductor (MOS)-based single-electron transistors (MOSETs) using band-to-band tunneling mechanism have been fabricated by the conventional silicon-on-insulator (SOI) MOSFET technologies. The fabricated SETs have tunnel barriers and quantum-dot formed by an extremely small chann...
Saved in:
Published in: | Japanese Journal of Applied Physics 2004-04, Vol.43 (4S), p.2031 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel metal-oxide-semiconductor (MOS)-based single-electron transistors (MOSETs) using band-to-band tunneling mechanism have been fabricated by the conventional silicon-on-insulator (SOI) MOSFET technologies. The fabricated SETs have tunnel barriers and quantum-dot formed by an extremely small channel between two p
+
-n
+
tunnel junctions in the degenerately doped SOI MOSFET. Coulomb oscillation was observed in the subthreshold region at liquid nitrogen temperature and total capacitance of quantum-dot is 2.25 aF which is well matched to the device geometry. In order to validate the operation principle of our device, we have implemented an analytical device model in the simulation program with integrated circuit emphasis (SPICE). SPICE simulation of our model with a unique distribution function has reproduced the experimental results with good agreement for wide gate and drain bias range. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.1143/JJAP.43.2031 |