Loading…
Enhanced K-edge Angiography Utilizing Tantalum Plasma X-ray Generator in Conjunction with Gadolinium-Based Contrast Media
The tantalum plasma flash X-ray generator is useful for performing high-speed enhanced K-edge angiography using cone beams because K-series characteristic X-rays from the tantalum target are absorbed effectively by gadolinium-based contrast media. In the flash X-ray generator, a 150 nF condenser is...
Saved in:
Published in: | Japanese Journal of Applied Physics 2005-12, Vol.44 (12R), p.8716 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tantalum plasma flash X-ray generator is useful for performing high-speed enhanced K-edge angiography using cone beams because K-series characteristic X-rays from the tantalum target are absorbed effectively by gadolinium-based contrast media. In the flash X-ray generator, a 150 nF condenser is charged up to 80 kV by a power supply, and flash X-rays are produced by the discharging. The X-ray tube is a demountable cold-cathode diode, and the turbomolecular pump evacuates air from the tube with a pressure of approximately 1 mPa. Since the electric circuit of the high-voltage pulse generator employs a cable transmission line, the high-voltage pulse generator produces twice the potential of the condenser charging voltage. At a charging voltage of 80 kV, the estimated maximum tube voltage and current were approximately 160 kV and 40 kA, respectively. When the charging voltage was increased, the K-series characteristic X-ray intensities of cerium increased. The K lines were clean and intense, and hardly any bremsstrahlung rays were detected. The X-ray pulse widths were approximately 100 ns, and the time-integrated X-ray intensity had a value of approximately 300 µGy at 1.0 m from the X-ray source with a charging voltage of 80 kV. Angiography was performed using a filmless computed radiography (CR) system and gadolinium-based contrast media. In the angiography of nonliving animals, we observed fine blood vessels of approximately 100 µm with high contrasts. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.1143/JJAP.44.8716 |