Loading…
Design and Finite Element Method Analysis of Laterally Actuated Multi-Value Nano Electromechanical Switches
We report on the design and modeling of novel nano electromechanical switches suitable for implementing reset/set flip-flops, AND, NOR, and XNOR Boolean functions. Multiple logic operations can be implemented using only one switching action enabling parallel data processing; a feature that renders t...
Saved in:
Published in: | Japanese Journal of Applied Physics 2011-09, Vol.50 (9), p.094301-094301-9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the design and modeling of novel nano electromechanical switches suitable for implementing reset/set flip-flops, AND, NOR, and XNOR Boolean functions. Multiple logic operations can be implemented using only one switching action enabling parallel data processing; a feature that renders this design competitive with complementary metal oxide semiconductor and superior to conventional nano-electromechanical switches in terms of functionality per device footprint. The structural architecture of the newly designed switch consists of a pinned flexural beam structure which allows low strain lateral actuation for enhanced mechanical integrity. Reliable control of on-state electrical current density is achieved through the use of metal-metal contacts, true parallel beam deflection, and lithographically defined contact area to prevent possible device welding. Dynamic response as a function of device dimensions numerically investigated using ANSYS and MatLab Simulink. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.1143/JJAP.50.094301 |