Loading…

Surface Nanostructure Optimization for GaAs Solar Cell Application

Numerical simulation of optical absorption characteristics of gallium arsenide (GaAs) thin-film solar cells by the three-dimensional finite element method is presented, with emphasis on optimizing geometric parameters for nanowire and nanocone structures to maximize the ultimate photocurrent under A...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2012-10, Vol.51 (10), p.10ND13-10ND13-3
Main Authors: Hong, Lei, Rusli, Yu, Hongyu, Wang, Xincai, Wang, Hao, Zheng, Hongyu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-f9b859e07223fe1c083ff4d8308a637a0187b31b0d36cbf668144ed99b155bf43
cites cdi_FETCH-LOGICAL-c340t-f9b859e07223fe1c083ff4d8308a637a0187b31b0d36cbf668144ed99b155bf43
container_end_page 10ND13-3
container_issue 10
container_start_page 10ND13
container_title Japanese Journal of Applied Physics
container_volume 51
creator Hong, Lei
Rusli
Yu, Hongyu
Wang, Xincai
Wang, Hao
Zheng, Hongyu
description Numerical simulation of optical absorption characteristics of gallium arsenide (GaAs) thin-film solar cells by the three-dimensional finite element method is presented, with emphasis on optimizing geometric parameters for nanowire and nanocone structures to maximize the ultimate photocurrent under AM1.5G illumination. The nanostructure-based GaAs thin-film solar cells have demonstrated a much higher photocurrent than the planar thin films owing to their much suppressed reflection and high light trapping capability. The nanowire structure achieves its highest ultimate photocurrent of 29.43 mA/cm 2 with a periodicity ($P$) of 300 nm and a wire diameter of 180 nm. In contrast, the nanocone array structure offers the best performance with an ultimate photocurrent of 32.14 mA/cm 2 . The results obtained in this work provide useful guidelines for the design of high-efficiency nanostructure-based GaAs solar cells.
doi_str_mv 10.1143/JJAP.51.10ND13
format article
fullrecord <record><control><sourceid>ipap_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1143_JJAP_51_10ND13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1143_JJAP_51_10ND13</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-f9b859e07223fe1c083ff4d8308a637a0187b31b0d36cbf668144ed99b155bf43</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqGwMntGSrg3tvMYQ4BCVbVIhTmyHVsKShvLTgb49bSEneno6DyGj5BbhASRs_vVqnpLBCYIm0dkZyRCxvOYQybOSQSQYszLNL0kVyF8Hm0mOEbkYTd5K7WhG3kYwugnPU7e0K0bu333LcduOFA7eLqUVaC7oZee1qbvaeVc3-nf_JpcWNkHc_OnC_Lx_PRev8Tr7fK1rtaxZhzG2JaqEKWBPE2ZNaihYNbytmBQyIzlErDIFUMFLcu0sllWIOemLUuFQijL2YIk86_2Qwje2Mb5bi_9V4PQnAg0JwKNwGYmcBzczYPOSfdf-Qekp1tP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Nanostructure Optimization for GaAs Solar Cell Application</title><source>IOPscience extra</source><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Hong, Lei ; Rusli ; Yu, Hongyu ; Wang, Xincai ; Wang, Hao ; Zheng, Hongyu</creator><creatorcontrib>Hong, Lei ; Rusli ; Yu, Hongyu ; Wang, Xincai ; Wang, Hao ; Zheng, Hongyu</creatorcontrib><description>Numerical simulation of optical absorption characteristics of gallium arsenide (GaAs) thin-film solar cells by the three-dimensional finite element method is presented, with emphasis on optimizing geometric parameters for nanowire and nanocone structures to maximize the ultimate photocurrent under AM1.5G illumination. The nanostructure-based GaAs thin-film solar cells have demonstrated a much higher photocurrent than the planar thin films owing to their much suppressed reflection and high light trapping capability. The nanowire structure achieves its highest ultimate photocurrent of 29.43 mA/cm 2 with a periodicity ($P$) of 300 nm and a wire diameter of 180 nm. In contrast, the nanocone array structure offers the best performance with an ultimate photocurrent of 32.14 mA/cm 2 . The results obtained in this work provide useful guidelines for the design of high-efficiency nanostructure-based GaAs solar cells.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.1143/JJAP.51.10ND13</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><ispartof>Japanese Journal of Applied Physics, 2012-10, Vol.51 (10), p.10ND13-10ND13-3</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-f9b859e07223fe1c083ff4d8308a637a0187b31b0d36cbf668144ed99b155bf43</citedby><cites>FETCH-LOGICAL-c340t-f9b859e07223fe1c083ff4d8308a637a0187b31b0d36cbf668144ed99b155bf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hong, Lei</creatorcontrib><creatorcontrib>Rusli</creatorcontrib><creatorcontrib>Yu, Hongyu</creatorcontrib><creatorcontrib>Wang, Xincai</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zheng, Hongyu</creatorcontrib><title>Surface Nanostructure Optimization for GaAs Solar Cell Application</title><title>Japanese Journal of Applied Physics</title><description>Numerical simulation of optical absorption characteristics of gallium arsenide (GaAs) thin-film solar cells by the three-dimensional finite element method is presented, with emphasis on optimizing geometric parameters for nanowire and nanocone structures to maximize the ultimate photocurrent under AM1.5G illumination. The nanostructure-based GaAs thin-film solar cells have demonstrated a much higher photocurrent than the planar thin films owing to their much suppressed reflection and high light trapping capability. The nanowire structure achieves its highest ultimate photocurrent of 29.43 mA/cm 2 with a periodicity ($P$) of 300 nm and a wire diameter of 180 nm. In contrast, the nanocone array structure offers the best performance with an ultimate photocurrent of 32.14 mA/cm 2 . The results obtained in this work provide useful guidelines for the design of high-efficiency nanostructure-based GaAs solar cells.</description><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqGwMntGSrg3tvMYQ4BCVbVIhTmyHVsKShvLTgb49bSEneno6DyGj5BbhASRs_vVqnpLBCYIm0dkZyRCxvOYQybOSQSQYszLNL0kVyF8Hm0mOEbkYTd5K7WhG3kYwugnPU7e0K0bu333LcduOFA7eLqUVaC7oZee1qbvaeVc3-nf_JpcWNkHc_OnC_Lx_PRev8Tr7fK1rtaxZhzG2JaqEKWBPE2ZNaihYNbytmBQyIzlErDIFUMFLcu0sllWIOemLUuFQijL2YIk86_2Qwje2Mb5bi_9V4PQnAg0JwKNwGYmcBzczYPOSfdf-Qekp1tP</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Hong, Lei</creator><creator>Rusli</creator><creator>Yu, Hongyu</creator><creator>Wang, Xincai</creator><creator>Wang, Hao</creator><creator>Zheng, Hongyu</creator><general>The Japan Society of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121001</creationdate><title>Surface Nanostructure Optimization for GaAs Solar Cell Application</title><author>Hong, Lei ; Rusli ; Yu, Hongyu ; Wang, Xincai ; Wang, Hao ; Zheng, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-f9b859e07223fe1c083ff4d8308a637a0187b31b0d36cbf668144ed99b155bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Lei</creatorcontrib><creatorcontrib>Rusli</creatorcontrib><creatorcontrib>Yu, Hongyu</creatorcontrib><creatorcontrib>Wang, Xincai</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zheng, Hongyu</creatorcontrib><collection>CrossRef</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Lei</au><au>Rusli</au><au>Yu, Hongyu</au><au>Wang, Xincai</au><au>Wang, Hao</au><au>Zheng, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Nanostructure Optimization for GaAs Solar Cell Application</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>51</volume><issue>10</issue><spage>10ND13</spage><epage>10ND13-3</epage><pages>10ND13-10ND13-3</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>Numerical simulation of optical absorption characteristics of gallium arsenide (GaAs) thin-film solar cells by the three-dimensional finite element method is presented, with emphasis on optimizing geometric parameters for nanowire and nanocone structures to maximize the ultimate photocurrent under AM1.5G illumination. The nanostructure-based GaAs thin-film solar cells have demonstrated a much higher photocurrent than the planar thin films owing to their much suppressed reflection and high light trapping capability. The nanowire structure achieves its highest ultimate photocurrent of 29.43 mA/cm 2 with a periodicity ($P$) of 300 nm and a wire diameter of 180 nm. In contrast, the nanocone array structure offers the best performance with an ultimate photocurrent of 32.14 mA/cm 2 . The results obtained in this work provide useful guidelines for the design of high-efficiency nanostructure-based GaAs solar cells.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.1143/JJAP.51.10ND13</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2012-10, Vol.51 (10), p.10ND13-10ND13-3
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_1143_JJAP_51_10ND13
source IOPscience extra; Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Surface Nanostructure Optimization for GaAs Solar Cell Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ipap_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Nanostructure%20Optimization%20for%20GaAs%20Solar%20Cell%20Application&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Hong,%20Lei&rft.date=2012-10-01&rft.volume=51&rft.issue=10&rft.spage=10ND13&rft.epage=10ND13-3&rft.pages=10ND13-10ND13-3&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.1143/JJAP.51.10ND13&rft_dat=%3Cipap_cross%3E10_1143_JJAP_51_10ND13%3C/ipap_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-f9b859e07223fe1c083ff4d8308a637a0187b31b0d36cbf668144ed99b155bf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true