Loading…

Rolling Friction of Metals

Theoretical equations of rolling friction coefficient of metal by the rigid pendulum method were obtained as a function of dynamic mechanical properties of metal for the case of cylinder and sphere as follows, λ c =3 k /2π(3/2) 1/3 tan δ( W / E 1 (ω)) 1/3 r -2/3 and λ s =128 k /15π 2 (4/π) 1/4 tan δ...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 1969-10, Vol.8 (10), p.1171
Main Authors: Minato, Kikuwo, Nakafuku, Chitoshi, Takemura, Tetuo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-184e90f0f9c6a6e625fd7d81f5f019f1bc9b1c4749f5eb17a48caf4b704287fd3
cites cdi_FETCH-LOGICAL-c273t-184e90f0f9c6a6e625fd7d81f5f019f1bc9b1c4749f5eb17a48caf4b704287fd3
container_end_page
container_issue 10
container_start_page 1171
container_title Japanese Journal of Applied Physics
container_volume 8
creator Minato, Kikuwo
Nakafuku, Chitoshi
Takemura, Tetuo
description Theoretical equations of rolling friction coefficient of metal by the rigid pendulum method were obtained as a function of dynamic mechanical properties of metal for the case of cylinder and sphere as follows, λ c =3 k /2π(3/2) 1/3 tan δ( W / E 1 (ω)) 1/3 r -2/3 and λ s =128 k /15π 2 (4/π) 1/4 tan δ( W / E 1 (ω)) 1/4 r -3/4 , respectively, where tan δ is the mechanical loss, E 1 (ω) the Young's modulus, W the load, r the radius of roller and k the adjusting parameter. In the case of no micro plastic deformation due to adhesion these equations have good agreement with experiments over a wide temperature range by putting k =1/2 (this is the case of a continuous one dimensional generalized Voigt model). In the case of some micro plastic deformation, however, the experimental value of friction coefficient increases to the case of k =2.
doi_str_mv 10.1143/JJAP.8.1171
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1143_JJAP_8_1171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1143_JJAP_8_1171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-184e90f0f9c6a6e625fd7d81f5f019f1bc9b1c4749f5eb17a48caf4b704287fd3</originalsourceid><addsrcrecordid>eNotj7FOwzAURS0EEqEwsTFlRy5-9ktsj1VFC1WrIgSz5Th-KCg0yM7C35MIpnPvcqTD2C2IJQCqh91u9bI009ZwxgpQqDmKujpnhRASOFopL9lVzp_TrSuEgt29Dn3fnT7KTerC2A2ncqDyEEff52t2QRPizT8X7H3z-LZ-4vvj9nm92vMgtRo5GIxWkCAbal_HWlbU6tYAVSTAEjTBNhBQo6UqNqA9muAJGy1QGk2tWrD7P29IQ84pkvtO3ZdPPw6Em7PcnOWMm7PUL83VPnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rolling Friction of Metals</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics</source><creator>Minato, Kikuwo ; Nakafuku, Chitoshi ; Takemura, Tetuo</creator><creatorcontrib>Minato, Kikuwo ; Nakafuku, Chitoshi ; Takemura, Tetuo</creatorcontrib><description>Theoretical equations of rolling friction coefficient of metal by the rigid pendulum method were obtained as a function of dynamic mechanical properties of metal for the case of cylinder and sphere as follows, λ c =3 k /2π(3/2) 1/3 tan δ( W / E 1 (ω)) 1/3 r -2/3 and λ s =128 k /15π 2 (4/π) 1/4 tan δ( W / E 1 (ω)) 1/4 r -3/4 , respectively, where tan δ is the mechanical loss, E 1 (ω) the Young's modulus, W the load, r the radius of roller and k the adjusting parameter. In the case of no micro plastic deformation due to adhesion these equations have good agreement with experiments over a wide temperature range by putting k =1/2 (this is the case of a continuous one dimensional generalized Voigt model). In the case of some micro plastic deformation, however, the experimental value of friction coefficient increases to the case of k =2.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.1143/JJAP.8.1171</identifier><language>eng</language><ispartof>Japanese Journal of Applied Physics, 1969-10, Vol.8 (10), p.1171</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-184e90f0f9c6a6e625fd7d81f5f019f1bc9b1c4749f5eb17a48caf4b704287fd3</citedby><cites>FETCH-LOGICAL-c273t-184e90f0f9c6a6e625fd7d81f5f019f1bc9b1c4749f5eb17a48caf4b704287fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Minato, Kikuwo</creatorcontrib><creatorcontrib>Nakafuku, Chitoshi</creatorcontrib><creatorcontrib>Takemura, Tetuo</creatorcontrib><title>Rolling Friction of Metals</title><title>Japanese Journal of Applied Physics</title><description>Theoretical equations of rolling friction coefficient of metal by the rigid pendulum method were obtained as a function of dynamic mechanical properties of metal for the case of cylinder and sphere as follows, λ c =3 k /2π(3/2) 1/3 tan δ( W / E 1 (ω)) 1/3 r -2/3 and λ s =128 k /15π 2 (4/π) 1/4 tan δ( W / E 1 (ω)) 1/4 r -3/4 , respectively, where tan δ is the mechanical loss, E 1 (ω) the Young's modulus, W the load, r the radius of roller and k the adjusting parameter. In the case of no micro plastic deformation due to adhesion these equations have good agreement with experiments over a wide temperature range by putting k =1/2 (this is the case of a continuous one dimensional generalized Voigt model). In the case of some micro plastic deformation, however, the experimental value of friction coefficient increases to the case of k =2.</description><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><recordid>eNotj7FOwzAURS0EEqEwsTFlRy5-9ktsj1VFC1WrIgSz5Th-KCg0yM7C35MIpnPvcqTD2C2IJQCqh91u9bI009ZwxgpQqDmKujpnhRASOFopL9lVzp_TrSuEgt29Dn3fnT7KTerC2A2ncqDyEEff52t2QRPizT8X7H3z-LZ-4vvj9nm92vMgtRo5GIxWkCAbal_HWlbU6tYAVSTAEjTBNhBQo6UqNqA9muAJGy1QGk2tWrD7P29IQ84pkvtO3ZdPPw6Em7PcnOWMm7PUL83VPnU</recordid><startdate>19691001</startdate><enddate>19691001</enddate><creator>Minato, Kikuwo</creator><creator>Nakafuku, Chitoshi</creator><creator>Takemura, Tetuo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19691001</creationdate><title>Rolling Friction of Metals</title><author>Minato, Kikuwo ; Nakafuku, Chitoshi ; Takemura, Tetuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-184e90f0f9c6a6e625fd7d81f5f019f1bc9b1c4749f5eb17a48caf4b704287fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minato, Kikuwo</creatorcontrib><creatorcontrib>Nakafuku, Chitoshi</creatorcontrib><creatorcontrib>Takemura, Tetuo</creatorcontrib><collection>CrossRef</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minato, Kikuwo</au><au>Nakafuku, Chitoshi</au><au>Takemura, Tetuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling Friction of Metals</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>1969-10-01</date><risdate>1969</risdate><volume>8</volume><issue>10</issue><spage>1171</spage><pages>1171-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>Theoretical equations of rolling friction coefficient of metal by the rigid pendulum method were obtained as a function of dynamic mechanical properties of metal for the case of cylinder and sphere as follows, λ c =3 k /2π(3/2) 1/3 tan δ( W / E 1 (ω)) 1/3 r -2/3 and λ s =128 k /15π 2 (4/π) 1/4 tan δ( W / E 1 (ω)) 1/4 r -3/4 , respectively, where tan δ is the mechanical loss, E 1 (ω) the Young's modulus, W the load, r the radius of roller and k the adjusting parameter. In the case of no micro plastic deformation due to adhesion these equations have good agreement with experiments over a wide temperature range by putting k =1/2 (this is the case of a continuous one dimensional generalized Voigt model). In the case of some micro plastic deformation, however, the experimental value of friction coefficient increases to the case of k =2.</abstract><doi>10.1143/JJAP.8.1171</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 1969-10, Vol.8 (10), p.1171
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_1143_JJAP_8_1171
source Institute of Physics IOPscience extra; Institute of Physics
title Rolling Friction of Metals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%20Friction%20of%20Metals&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Minato,%20Kikuwo&rft.date=1969-10-01&rft.volume=8&rft.issue=10&rft.spage=1171&rft.pages=1171-&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.1143/JJAP.8.1171&rft_dat=%3Ccrossref%3E10_1143_JJAP_8_1171%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-184e90f0f9c6a6e625fd7d81f5f019f1bc9b1c4749f5eb17a48caf4b704287fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true