Loading…
Application of Tsallis Nonextensive Statistics to the Anomalous Diffusion of the Standard Map
The anomalous diffusion due to accelerator-mode islands in the Standard Map is analyzed with the aid of Tsallis nonextensive statistics. In this treatment, we introduce a new variable x, which represents the displacement per jump while the chaotic orbit is trapped by the accelerator-mode islands. We...
Saved in:
Published in: | Progress of theoretical and experimental physics 2005-11, Vol.114 (5), p.943-952 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-36a0a1ed82184ca0cf7421cd5c1090c576240cd80518692b05f1a74b869b714e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-36a0a1ed82184ca0cf7421cd5c1090c576240cd80518692b05f1a74b869b714e3 |
container_end_page | 952 |
container_issue | 5 |
container_start_page | 943 |
container_title | Progress of theoretical and experimental physics |
container_volume | 114 |
creator | Ishizaki, Ryuji Inoue, Masayoshi |
description | The anomalous diffusion due to accelerator-mode islands in the Standard Map is analyzed with the aid of Tsallis nonextensive statistics. In this treatment, we introduce a new variable x, which represents the displacement per jump while the chaotic orbit is trapped by the accelerator-mode islands. We have shown numerically that the one-jump distribution function p(x) is qualitatively similar to the function pq
(x) derived using the maximum Tsallis entropy principle with appropriate conditions. [C. Tsallis, J. Stat. Phys. 52 (1988), 479; Phys. Lett. A 195 (1994), 329.] We find that the n-jump distribution function p(x, n) converges to the n-jump distribution function obtained from the Lévy-Gnedenko central-limit theorem in the n → ∞ limit. |
doi_str_mv | 10.1143/PTP.114.943 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1143_PTP_114_943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1143/PTP.114.943</oup_id><sourcerecordid>10.1143/PTP.114.943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-36a0a1ed82184ca0cf7421cd5c1090c576240cd80518692b05f1a74b869b714e3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGpP_oFc9CJbZzbZ3eyxVKtC1YIVvMiSZhOMbDfLJhX992ZpwZunecP73gw8Qs4RpoicXa_Wq0FMS86OyCiFDBJWIh6TEQBjCeTi7ZRMvP8EAISiAI4j8j7rusYqGaxrqTN07WXTWE-fXKu_g269_dL0JUTfB6s8DY6GD01nrdvKxu08vbHG7PwhPVgRbmvZ1_RRdmfkxMjG68lhjsnr4nY9v0-Wz3cP89kyUUxkIWG5BIm6FikKriQoU_AUVZ0phBJUVuQpB1ULyFDkZbqBzKAs-CYumwK5ZmNytb-reud9r03V9XYr-58KoRrKqWI5g6hiOZG-2NOd9Eo2ppetsv4vEp9nJYjIXe45t-v-PfgLi05vyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Tsallis Nonextensive Statistics to the Anomalous Diffusion of the Standard Map</title><source>Open Access: Oxford University Press Open Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Ishizaki, Ryuji ; Inoue, Masayoshi</creator><creatorcontrib>Ishizaki, Ryuji ; Inoue, Masayoshi</creatorcontrib><description>The anomalous diffusion due to accelerator-mode islands in the Standard Map is analyzed with the aid of Tsallis nonextensive statistics. In this treatment, we introduce a new variable x, which represents the displacement per jump while the chaotic orbit is trapped by the accelerator-mode islands. We have shown numerically that the one-jump distribution function p(x) is qualitatively similar to the function pq
(x) derived using the maximum Tsallis entropy principle with appropriate conditions. [C. Tsallis, J. Stat. Phys. 52 (1988), 479; Phys. Lett. A 195 (1994), 329.] We find that the n-jump distribution function p(x, n) converges to the n-jump distribution function obtained from the Lévy-Gnedenko central-limit theorem in the n → ∞ limit.</description><identifier>ISSN: 0033-068X</identifier><identifier>EISSN: 2050-3911</identifier><identifier>EISSN: 1347-4081</identifier><identifier>DOI: 10.1143/PTP.114.943</identifier><identifier>CODEN: PTPKAV</identifier><language>eng</language><publisher>Kyoto: Oxford University Press</publisher><subject>Exact sciences and technology ; Physics</subject><ispartof>Progress of theoretical and experimental physics, 2005-11, Vol.114 (5), p.943-952</ispartof><rights>2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-36a0a1ed82184ca0cf7421cd5c1090c576240cd80518692b05f1a74b869b714e3</citedby><cites>FETCH-LOGICAL-c385t-36a0a1ed82184ca0cf7421cd5c1090c576240cd80518692b05f1a74b869b714e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17425908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishizaki, Ryuji</creatorcontrib><creatorcontrib>Inoue, Masayoshi</creatorcontrib><title>Application of Tsallis Nonextensive Statistics to the Anomalous Diffusion of the Standard Map</title><title>Progress of theoretical and experimental physics</title><addtitle>Prog. Theor. Exp. Phys</addtitle><description>The anomalous diffusion due to accelerator-mode islands in the Standard Map is analyzed with the aid of Tsallis nonextensive statistics. In this treatment, we introduce a new variable x, which represents the displacement per jump while the chaotic orbit is trapped by the accelerator-mode islands. We have shown numerically that the one-jump distribution function p(x) is qualitatively similar to the function pq
(x) derived using the maximum Tsallis entropy principle with appropriate conditions. [C. Tsallis, J. Stat. Phys. 52 (1988), 479; Phys. Lett. A 195 (1994), 329.] We find that the n-jump distribution function p(x, n) converges to the n-jump distribution function obtained from the Lévy-Gnedenko central-limit theorem in the n → ∞ limit.</description><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0033-068X</issn><issn>2050-3911</issn><issn>1347-4081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGpP_oFc9CJbZzbZ3eyxVKtC1YIVvMiSZhOMbDfLJhX992ZpwZunecP73gw8Qs4RpoicXa_Wq0FMS86OyCiFDBJWIh6TEQBjCeTi7ZRMvP8EAISiAI4j8j7rusYqGaxrqTN07WXTWE-fXKu_g269_dL0JUTfB6s8DY6GD01nrdvKxu08vbHG7PwhPVgRbmvZ1_RRdmfkxMjG68lhjsnr4nY9v0-Wz3cP89kyUUxkIWG5BIm6FikKriQoU_AUVZ0phBJUVuQpB1ULyFDkZbqBzKAs-CYumwK5ZmNytb-reud9r03V9XYr-58KoRrKqWI5g6hiOZG-2NOd9Eo2ppetsv4vEp9nJYjIXe45t-v-PfgLi05vyg</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Ishizaki, Ryuji</creator><creator>Inoue, Masayoshi</creator><general>Oxford University Press</general><general>Progress of Theoretical Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051101</creationdate><title>Application of Tsallis Nonextensive Statistics to the Anomalous Diffusion of the Standard Map</title><author>Ishizaki, Ryuji ; Inoue, Masayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-36a0a1ed82184ca0cf7421cd5c1090c576240cd80518692b05f1a74b869b714e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishizaki, Ryuji</creatorcontrib><creatorcontrib>Inoue, Masayoshi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Progress of theoretical and experimental physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishizaki, Ryuji</au><au>Inoue, Masayoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Tsallis Nonextensive Statistics to the Anomalous Diffusion of the Standard Map</atitle><jtitle>Progress of theoretical and experimental physics</jtitle><stitle>Prog. Theor. Exp. Phys</stitle><date>2005-11-01</date><risdate>2005</risdate><volume>114</volume><issue>5</issue><spage>943</spage><epage>952</epage><pages>943-952</pages><issn>0033-068X</issn><eissn>2050-3911</eissn><eissn>1347-4081</eissn><coden>PTPKAV</coden><abstract>The anomalous diffusion due to accelerator-mode islands in the Standard Map is analyzed with the aid of Tsallis nonextensive statistics. In this treatment, we introduce a new variable x, which represents the displacement per jump while the chaotic orbit is trapped by the accelerator-mode islands. We have shown numerically that the one-jump distribution function p(x) is qualitatively similar to the function pq
(x) derived using the maximum Tsallis entropy principle with appropriate conditions. [C. Tsallis, J. Stat. Phys. 52 (1988), 479; Phys. Lett. A 195 (1994), 329.] We find that the n-jump distribution function p(x, n) converges to the n-jump distribution function obtained from the Lévy-Gnedenko central-limit theorem in the n → ∞ limit.</abstract><cop>Kyoto</cop><pub>Oxford University Press</pub><doi>10.1143/PTP.114.943</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-068X |
ispartof | Progress of theoretical and experimental physics, 2005-11, Vol.114 (5), p.943-952 |
issn | 0033-068X 2050-3911 1347-4081 |
language | eng |
recordid | cdi_crossref_primary_10_1143_PTP_114_943 |
source | Open Access: Oxford University Press Open Journals; Free E-Journal (出版社公開部分のみ) |
subjects | Exact sciences and technology Physics |
title | Application of Tsallis Nonextensive Statistics to the Anomalous Diffusion of the Standard Map |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Tsallis%20Nonextensive%20Statistics%20to%20the%20Anomalous%20Diffusion%20of%20the%20Standard%20Map&rft.jtitle=Progress%20of%20theoretical%20and%20experimental%20physics&rft.au=Ishizaki,%20Ryuji&rft.date=2005-11-01&rft.volume=114&rft.issue=5&rft.spage=943&rft.epage=952&rft.pages=943-952&rft.issn=0033-068X&rft.eissn=2050-3911&rft.coden=PTPKAV&rft_id=info:doi/10.1143/PTP.114.943&rft_dat=%3Coup_cross%3E10.1143/PTP.114.943%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-36a0a1ed82184ca0cf7421cd5c1090c576240cd80518692b05f1a74b869b714e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1143/PTP.114.943&rfr_iscdi=true |