Loading…

A Variational Principle for Dissipative Fluid Dynamics

Abstract In the variational principle leading to the Euler equation for a perfect fluid, we can use the method of undetermined multiplier for holonomic constraints representing mass conservation and adiabatic condition. For a dissipative fluid, the latter condition is replaced by the constraint spec...

Full description

Saved in:
Bibliographic Details
Published in:Progress of theoretical physics 2012-05, Vol.127 (5), p.921-935
Main Authors: Fukagawa, Hiroki, Fujitani, Youhei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-d709257e359608a234b792852c1ee835839b3fd698d5559caa714dc6c06a30013
cites cdi_FETCH-LOGICAL-c394t-d709257e359608a234b792852c1ee835839b3fd698d5559caa714dc6c06a30013
container_end_page 935
container_issue 5
container_start_page 921
container_title Progress of theoretical physics
container_volume 127
creator Fukagawa, Hiroki
Fujitani, Youhei
description Abstract In the variational principle leading to the Euler equation for a perfect fluid, we can use the method of undetermined multiplier for holonomic constraints representing mass conservation and adiabatic condition. For a dissipative fluid, the latter condition is replaced by the constraint specifying how to dissipate. Noting that this constraint is nonholonomic, we can derive the balance equation of momentum for viscous and viscoelastic fluids by using a single variational principle. We can also derive the associated Hamiltonian formulation by regarding the velocity field as the input in the framework of control theory.
doi_str_mv 10.1143/PTP.127.921
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1143_PTP_127_921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1143/PTP.127.921</oup_id><sourcerecordid>10.1143/PTP.127.921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-d709257e359608a234b792852c1ee835839b3fd698d5559caa714dc6c06a30013</originalsourceid><addsrcrecordid>eNp9z09LwzAYx_EgCtbpyTeQkxdpffI_OY7NqTCwhyneQpamEOnakmzC3r0d8-zpOTxffvBB6J5ARQhnT_WmrghVlaHkAhWEcVVy0OQSFQCMlSD11zW6yfkbAKgiqkByjj9dim4fh951uE6x93HsAm6HhJcx5zhOv5-AV90hNnh57N0u-nyLrlrX5XD3d2foY_W8WbyW6_eXt8V8XXpm-L5sFBgqVGDCSNCOMr5VhmpBPQlBM6GZ2bK2kUY3QgjjnVOEN156kI4BEDZDj-ddn4acU2jtmOLOpaMlYE9kO5HtRLYTeaofzvVwGP8NfwHha1OC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Variational Principle for Dissipative Fluid Dynamics</title><source>Open Access: Oxford University Press Open Journals</source><source>EZB Electronic Journals Library</source><creator>Fukagawa, Hiroki ; Fujitani, Youhei</creator><creatorcontrib>Fukagawa, Hiroki ; Fujitani, Youhei</creatorcontrib><description>Abstract In the variational principle leading to the Euler equation for a perfect fluid, we can use the method of undetermined multiplier for holonomic constraints representing mass conservation and adiabatic condition. For a dissipative fluid, the latter condition is replaced by the constraint specifying how to dissipate. Noting that this constraint is nonholonomic, we can derive the balance equation of momentum for viscous and viscoelastic fluids by using a single variational principle. We can also derive the associated Hamiltonian formulation by regarding the velocity field as the input in the framework of control theory.</description><identifier>ISSN: 0033-068X</identifier><identifier>EISSN: 1347-4081</identifier><identifier>DOI: 10.1143/PTP.127.921</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Progress of theoretical physics, 2012-05, Vol.127 (5), p.921-935</ispartof><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-d709257e359608a234b792852c1ee835839b3fd698d5559caa714dc6c06a30013</citedby><cites>FETCH-LOGICAL-c394t-d709257e359608a234b792852c1ee835839b3fd698d5559caa714dc6c06a30013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fukagawa, Hiroki</creatorcontrib><creatorcontrib>Fujitani, Youhei</creatorcontrib><title>A Variational Principle for Dissipative Fluid Dynamics</title><title>Progress of theoretical physics</title><description>Abstract In the variational principle leading to the Euler equation for a perfect fluid, we can use the method of undetermined multiplier for holonomic constraints representing mass conservation and adiabatic condition. For a dissipative fluid, the latter condition is replaced by the constraint specifying how to dissipate. Noting that this constraint is nonholonomic, we can derive the balance equation of momentum for viscous and viscoelastic fluids by using a single variational principle. We can also derive the associated Hamiltonian formulation by regarding the velocity field as the input in the framework of control theory.</description><issn>0033-068X</issn><issn>1347-4081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9z09LwzAYx_EgCtbpyTeQkxdpffI_OY7NqTCwhyneQpamEOnakmzC3r0d8-zpOTxffvBB6J5ARQhnT_WmrghVlaHkAhWEcVVy0OQSFQCMlSD11zW6yfkbAKgiqkByjj9dim4fh951uE6x93HsAm6HhJcx5zhOv5-AV90hNnh57N0u-nyLrlrX5XD3d2foY_W8WbyW6_eXt8V8XXpm-L5sFBgqVGDCSNCOMr5VhmpBPQlBM6GZ2bK2kUY3QgjjnVOEN156kI4BEDZDj-ddn4acU2jtmOLOpaMlYE9kO5HtRLYTeaofzvVwGP8NfwHha1OC</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Fukagawa, Hiroki</creator><creator>Fujitani, Youhei</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120501</creationdate><title>A Variational Principle for Dissipative Fluid Dynamics</title><author>Fukagawa, Hiroki ; Fujitani, Youhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-d709257e359608a234b792852c1ee835839b3fd698d5559caa714dc6c06a30013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukagawa, Hiroki</creatorcontrib><creatorcontrib>Fujitani, Youhei</creatorcontrib><collection>CrossRef</collection><jtitle>Progress of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukagawa, Hiroki</au><au>Fujitani, Youhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variational Principle for Dissipative Fluid Dynamics</atitle><jtitle>Progress of theoretical physics</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>127</volume><issue>5</issue><spage>921</spage><epage>935</epage><pages>921-935</pages><issn>0033-068X</issn><eissn>1347-4081</eissn><abstract>Abstract In the variational principle leading to the Euler equation for a perfect fluid, we can use the method of undetermined multiplier for holonomic constraints representing mass conservation and adiabatic condition. For a dissipative fluid, the latter condition is replaced by the constraint specifying how to dissipate. Noting that this constraint is nonholonomic, we can derive the balance equation of momentum for viscous and viscoelastic fluids by using a single variational principle. We can also derive the associated Hamiltonian formulation by regarding the velocity field as the input in the framework of control theory.</abstract><pub>Oxford University Press</pub><doi>10.1143/PTP.127.921</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-068X
ispartof Progress of theoretical physics, 2012-05, Vol.127 (5), p.921-935
issn 0033-068X
1347-4081
language eng
recordid cdi_crossref_primary_10_1143_PTP_127_921
source Open Access: Oxford University Press Open Journals; EZB Electronic Journals Library
title A Variational Principle for Dissipative Fluid Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variational%20Principle%20for%20Dissipative%20Fluid%20Dynamics&rft.jtitle=Progress%20of%20theoretical%20physics&rft.au=Fukagawa,%20Hiroki&rft.date=2012-05-01&rft.volume=127&rft.issue=5&rft.spage=921&rft.epage=935&rft.pages=921-935&rft.issn=0033-068X&rft.eissn=1347-4081&rft_id=info:doi/10.1143/PTP.127.921&rft_dat=%3Coup_cross%3E10.1143/PTP.127.921%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-d709257e359608a234b792852c1ee835839b3fd698d5559caa714dc6c06a30013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1143/PTP.127.921&rfr_iscdi=true