Loading…

Algorithm 688: EPDCOL: a more efficient PDECOL code

The software package PDECOL [7] is a popular code among scientists wishing to solve systems of nonlinear partial differential equations. The code is based on a method-of-lines approach, with collocation in the space variable to reduce the problem to a system of ordinary differential equations. There...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on mathematical software 1991-06, Vol.17 (2), p.153-166
Main Authors: Keast, P., Muir, P. H.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c191t-f42c36a8d90d444f71ffc692ad89a8738f7afe194cbac6910509bc640f9389183
container_end_page 166
container_issue 2
container_start_page 153
container_title ACM transactions on mathematical software
container_volume 17
creator Keast, P.
Muir, P. H.
description The software package PDECOL [7] is a popular code among scientists wishing to solve systems of nonlinear partial differential equations. The code is based on a method-of-lines approach, with collocation in the space variable to reduce the problem to a system of ordinary differential equations. There are three principal components: the basis functions employed in the collocation; the method used to solve the system of ordinary differential equations; and the linear equation solver which handles the linear algebra. This paper will concentrate on the third component, and will report on the improvement in the performance of PDECOL resulting from replacing the current linear algebra modules of the code by modules which take full advantage of the special structure of the equations which arise. Savings of over 50 percent in total execution time can be realized.
doi_str_mv 10.1145/108556.108558
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_108556_108558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_108556_108558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-f42c36a8d90d444f71ffc692ad89a8738f7afe194cbac6910509bc640f9389183</originalsourceid><addsrcrecordid>eNotz8tKA0EQheFGFBwTl9nnBTpWTd-q3IUxRmEgLsx66PRMaSQh0p2Nb-9lXH1wFgd-pWYIC0Tr7hDIOb_4gy5Uhc4FHWp2l6oCYNLGAVyrm1I-AKDGgJWaLQ9vp7w_vx_nnuh-vnp5aDbtVF1JPJTh9t-J2j6uXpsn3W7Wz82y1QkZz1psnYyP1DP01loJKJI817EnjhQMSYgyINu0iz87ggPeJW9B2BAjmYnS42_Kp1LyIN1n3h9j_uoQut-mbmwaIfMNA3Y61g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algorithm 688: EPDCOL: a more efficient PDECOL code</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Keast, P. ; Muir, P. H.</creator><creatorcontrib>Keast, P. ; Muir, P. H.</creatorcontrib><description>The software package PDECOL [7] is a popular code among scientists wishing to solve systems of nonlinear partial differential equations. The code is based on a method-of-lines approach, with collocation in the space variable to reduce the problem to a system of ordinary differential equations. There are three principal components: the basis functions employed in the collocation; the method used to solve the system of ordinary differential equations; and the linear equation solver which handles the linear algebra. This paper will concentrate on the third component, and will report on the improvement in the performance of PDECOL resulting from replacing the current linear algebra modules of the code by modules which take full advantage of the special structure of the equations which arise. Savings of over 50 percent in total execution time can be realized.</description><identifier>ISSN: 0098-3500</identifier><identifier>EISSN: 1557-7295</identifier><identifier>DOI: 10.1145/108556.108558</identifier><language>eng</language><ispartof>ACM transactions on mathematical software, 1991-06, Vol.17 (2), p.153-166</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-f42c36a8d90d444f71ffc692ad89a8738f7afe194cbac6910509bc640f9389183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Keast, P.</creatorcontrib><creatorcontrib>Muir, P. H.</creatorcontrib><title>Algorithm 688: EPDCOL: a more efficient PDECOL code</title><title>ACM transactions on mathematical software</title><description>The software package PDECOL [7] is a popular code among scientists wishing to solve systems of nonlinear partial differential equations. The code is based on a method-of-lines approach, with collocation in the space variable to reduce the problem to a system of ordinary differential equations. There are three principal components: the basis functions employed in the collocation; the method used to solve the system of ordinary differential equations; and the linear equation solver which handles the linear algebra. This paper will concentrate on the third component, and will report on the improvement in the performance of PDECOL resulting from replacing the current linear algebra modules of the code by modules which take full advantage of the special structure of the equations which arise. Savings of over 50 percent in total execution time can be realized.</description><issn>0098-3500</issn><issn>1557-7295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNotz8tKA0EQheFGFBwTl9nnBTpWTd-q3IUxRmEgLsx66PRMaSQh0p2Nb-9lXH1wFgd-pWYIC0Tr7hDIOb_4gy5Uhc4FHWp2l6oCYNLGAVyrm1I-AKDGgJWaLQ9vp7w_vx_nnuh-vnp5aDbtVF1JPJTh9t-J2j6uXpsn3W7Wz82y1QkZz1psnYyP1DP01loJKJI817EnjhQMSYgyINu0iz87ggPeJW9B2BAjmYnS42_Kp1LyIN1n3h9j_uoQut-mbmwaIfMNA3Y61g</recordid><startdate>19910601</startdate><enddate>19910601</enddate><creator>Keast, P.</creator><creator>Muir, P. H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910601</creationdate><title>Algorithm 688: EPDCOL</title><author>Keast, P. ; Muir, P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-f42c36a8d90d444f71ffc692ad89a8738f7afe194cbac6910509bc640f9389183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keast, P.</creatorcontrib><creatorcontrib>Muir, P. H.</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on mathematical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keast, P.</au><au>Muir, P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm 688: EPDCOL: a more efficient PDECOL code</atitle><jtitle>ACM transactions on mathematical software</jtitle><date>1991-06-01</date><risdate>1991</risdate><volume>17</volume><issue>2</issue><spage>153</spage><epage>166</epage><pages>153-166</pages><issn>0098-3500</issn><eissn>1557-7295</eissn><abstract>The software package PDECOL [7] is a popular code among scientists wishing to solve systems of nonlinear partial differential equations. The code is based on a method-of-lines approach, with collocation in the space variable to reduce the problem to a system of ordinary differential equations. There are three principal components: the basis functions employed in the collocation; the method used to solve the system of ordinary differential equations; and the linear equation solver which handles the linear algebra. This paper will concentrate on the third component, and will report on the improvement in the performance of PDECOL resulting from replacing the current linear algebra modules of the code by modules which take full advantage of the special structure of the equations which arise. Savings of over 50 percent in total execution time can be realized.</abstract><doi>10.1145/108556.108558</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-3500
ispartof ACM transactions on mathematical software, 1991-06, Vol.17 (2), p.153-166
issn 0098-3500
1557-7295
language eng
recordid cdi_crossref_primary_10_1145_108556_108558
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title Algorithm 688: EPDCOL: a more efficient PDECOL code
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm%20688:%20EPDCOL:%20a%20more%20efficient%20PDECOL%20code&rft.jtitle=ACM%20transactions%20on%20mathematical%20software&rft.au=Keast,%20P.&rft.date=1991-06-01&rft.volume=17&rft.issue=2&rft.spage=153&rft.epage=166&rft.pages=153-166&rft.issn=0098-3500&rft.eissn=1557-7295&rft_id=info:doi/10.1145/108556.108558&rft_dat=%3Ccrossref%3E10_1145_108556_108558%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-f42c36a8d90d444f71ffc692ad89a8738f7afe194cbac6910509bc640f9389183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true