Loading…

Procedural noise using sparse Gabor convolution

Noise is an essential tool for texturing and modeling. Designing interesting textures with noise calls for accurate spectral control, since noise is best described in terms of spectral content. Texturing requires that noise can be easily mapped to a surface, while high-quality rendering requires ani...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on graphics 2009-07, Vol.28 (3), p.1-10
Main Authors: Lagae, Ares, Lefebvre, Sylvain, Drettakis, George, Dutré, Philip
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Noise is an essential tool for texturing and modeling. Designing interesting textures with noise calls for accurate spectral control, since noise is best described in terms of spectral content. Texturing requires that noise can be easily mapped to a surface, while high-quality rendering requires anisotropic filtering. A noise function that is procedural and fast to evaluate offers several additional advantages. Unfortunately, no existing noise combines all of these properties. In this paper we introduce a noise based on sparse convolution and the Gabor kernel that enables all of these properties. Our noise offers accurate spectral control with intuitive parameters such as orientation, principal frequency and bandwidth. Our noise supports two-dimensional and solid noise, but we also introduce setup-free surface noise. This is a method for mapping noise onto a surface, complementary to solid noise, that maintains the appearance of the noise pattern along the object and does not require a texture parameterization. Our approach requires only a few bytes of storage, does not use discretely sampled data, and is nonperiodic. It supports anisotropy and anisotropic filtering. We demonstrate our noise using an interactive tool for noise design.
ISSN:0730-0301
1557-7368
DOI:10.1145/1531326.1531360