Loading…

Colors -- Messengers of Concepts: Visual Design Mining for Learning Color Semantics

We study the concept of color semantics by modeling a dataset of magazine cover designs, evaluating the model via crowdsourcing, and demonstrating several prototypes that facilitate color-related design tasks. We investigate a probabilistic generative modeling framework that expresses semantic conce...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on computer-human interaction 2017-03, Vol.24 (1), p.1-39
Main Authors: Jahanian, Ali, Keshvari, Shaiyan, Vishwanathan, S. V. N., Allebach, Jan P.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c187t-c8ee5730a44f721bc3b22e66f613b7316a8e70c594ebf06cbb3e7333ace51a963
container_end_page 39
container_issue 1
container_start_page 1
container_title ACM transactions on computer-human interaction
container_volume 24
creator Jahanian, Ali
Keshvari, Shaiyan
Vishwanathan, S. V. N.
Allebach, Jan P.
description We study the concept of color semantics by modeling a dataset of magazine cover designs, evaluating the model via crowdsourcing, and demonstrating several prototypes that facilitate color-related design tasks. We investigate a probabilistic generative modeling framework that expresses semantic concepts as a combination of color and word distributions -- color-word topics. We adopt an extension to Latent Dirichlet Allocation (LDA) topic modeling, called LDA-dual, to infer a set of color-word topics over a corpus of 2,654 magazine covers spanning 71 distinct titles and 12 genres. Although LDA models text documents as distributions over word topics, we model magazine covers as distributions over color-word topics. The results of our crowdsourcing experiments confirm that the model is able to successfully discover the associations between colors and linguistic concepts. Finally, we demonstrate several prototype applications that use the learned model to enable more meaningful interactions in color palette recommendation, design example retrieval, pattern recoloring, image retrieval, and image color selection.
doi_str_mv 10.1145/3009924
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3009924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3009924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-c8ee5730a44f721bc3b22e66f613b7316a8e70c594ebf06cbb3e7333ace51a963</originalsourceid><addsrcrecordid>eNotj0FLAzEQhYNYsLbFv7A3T9GZTJLZPcqiVqh4ac9LEiZFqd2S9OK_d8We3nvf4cGn1B3CA6J1jwTQdcZeqTk6x5rJuOupA5MGh_5G3db6BQDI3s5V04-HsdRG6-ZdapXjXqY15okfk5zOdalmORyqrC65ULuX522_1puP17f-aaMTtnzWqRVxTBCszWwwJorGiPfZI0Um9KEVhuQ6KzGDTzGSMBGFJA5D52mh7v9_UxlrLZKHU_n8DuVnQBj-xIaLGP0CPtk9bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Colors -- Messengers of Concepts: Visual Design Mining for Learning Color Semantics</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Jahanian, Ali ; Keshvari, Shaiyan ; Vishwanathan, S. V. N. ; Allebach, Jan P.</creator><creatorcontrib>Jahanian, Ali ; Keshvari, Shaiyan ; Vishwanathan, S. V. N. ; Allebach, Jan P.</creatorcontrib><description>We study the concept of color semantics by modeling a dataset of magazine cover designs, evaluating the model via crowdsourcing, and demonstrating several prototypes that facilitate color-related design tasks. We investigate a probabilistic generative modeling framework that expresses semantic concepts as a combination of color and word distributions -- color-word topics. We adopt an extension to Latent Dirichlet Allocation (LDA) topic modeling, called LDA-dual, to infer a set of color-word topics over a corpus of 2,654 magazine covers spanning 71 distinct titles and 12 genres. Although LDA models text documents as distributions over word topics, we model magazine covers as distributions over color-word topics. The results of our crowdsourcing experiments confirm that the model is able to successfully discover the associations between colors and linguistic concepts. Finally, we demonstrate several prototype applications that use the learned model to enable more meaningful interactions in color palette recommendation, design example retrieval, pattern recoloring, image retrieval, and image color selection.</description><identifier>ISSN: 1073-0516</identifier><identifier>EISSN: 1557-7325</identifier><identifier>DOI: 10.1145/3009924</identifier><language>eng</language><ispartof>ACM transactions on computer-human interaction, 2017-03, Vol.24 (1), p.1-39</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c187t-c8ee5730a44f721bc3b22e66f613b7316a8e70c594ebf06cbb3e7333ace51a963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jahanian, Ali</creatorcontrib><creatorcontrib>Keshvari, Shaiyan</creatorcontrib><creatorcontrib>Vishwanathan, S. V. N.</creatorcontrib><creatorcontrib>Allebach, Jan P.</creatorcontrib><title>Colors -- Messengers of Concepts: Visual Design Mining for Learning Color Semantics</title><title>ACM transactions on computer-human interaction</title><description>We study the concept of color semantics by modeling a dataset of magazine cover designs, evaluating the model via crowdsourcing, and demonstrating several prototypes that facilitate color-related design tasks. We investigate a probabilistic generative modeling framework that expresses semantic concepts as a combination of color and word distributions -- color-word topics. We adopt an extension to Latent Dirichlet Allocation (LDA) topic modeling, called LDA-dual, to infer a set of color-word topics over a corpus of 2,654 magazine covers spanning 71 distinct titles and 12 genres. Although LDA models text documents as distributions over word topics, we model magazine covers as distributions over color-word topics. The results of our crowdsourcing experiments confirm that the model is able to successfully discover the associations between colors and linguistic concepts. Finally, we demonstrate several prototype applications that use the learned model to enable more meaningful interactions in color palette recommendation, design example retrieval, pattern recoloring, image retrieval, and image color selection.</description><issn>1073-0516</issn><issn>1557-7325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotj0FLAzEQhYNYsLbFv7A3T9GZTJLZPcqiVqh4ac9LEiZFqd2S9OK_d8We3nvf4cGn1B3CA6J1jwTQdcZeqTk6x5rJuOupA5MGh_5G3db6BQDI3s5V04-HsdRG6-ZdapXjXqY15okfk5zOdalmORyqrC65ULuX522_1puP17f-aaMTtnzWqRVxTBCszWwwJorGiPfZI0Um9KEVhuQ6KzGDTzGSMBGFJA5D52mh7v9_UxlrLZKHU_n8DuVnQBj-xIaLGP0CPtk9bA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Jahanian, Ali</creator><creator>Keshvari, Shaiyan</creator><creator>Vishwanathan, S. V. N.</creator><creator>Allebach, Jan P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Colors -- Messengers of Concepts</title><author>Jahanian, Ali ; Keshvari, Shaiyan ; Vishwanathan, S. V. N. ; Allebach, Jan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-c8ee5730a44f721bc3b22e66f613b7316a8e70c594ebf06cbb3e7333ace51a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahanian, Ali</creatorcontrib><creatorcontrib>Keshvari, Shaiyan</creatorcontrib><creatorcontrib>Vishwanathan, S. V. N.</creatorcontrib><creatorcontrib>Allebach, Jan P.</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computer-human interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahanian, Ali</au><au>Keshvari, Shaiyan</au><au>Vishwanathan, S. V. N.</au><au>Allebach, Jan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colors -- Messengers of Concepts: Visual Design Mining for Learning Color Semantics</atitle><jtitle>ACM transactions on computer-human interaction</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>24</volume><issue>1</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><issn>1073-0516</issn><eissn>1557-7325</eissn><abstract>We study the concept of color semantics by modeling a dataset of magazine cover designs, evaluating the model via crowdsourcing, and demonstrating several prototypes that facilitate color-related design tasks. We investigate a probabilistic generative modeling framework that expresses semantic concepts as a combination of color and word distributions -- color-word topics. We adopt an extension to Latent Dirichlet Allocation (LDA) topic modeling, called LDA-dual, to infer a set of color-word topics over a corpus of 2,654 magazine covers spanning 71 distinct titles and 12 genres. Although LDA models text documents as distributions over word topics, we model magazine covers as distributions over color-word topics. The results of our crowdsourcing experiments confirm that the model is able to successfully discover the associations between colors and linguistic concepts. Finally, we demonstrate several prototype applications that use the learned model to enable more meaningful interactions in color palette recommendation, design example retrieval, pattern recoloring, image retrieval, and image color selection.</abstract><doi>10.1145/3009924</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-0516
ispartof ACM transactions on computer-human interaction, 2017-03, Vol.24 (1), p.1-39
issn 1073-0516
1557-7325
language eng
recordid cdi_crossref_primary_10_1145_3009924
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title Colors -- Messengers of Concepts: Visual Design Mining for Learning Color Semantics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colors%20--%20Messengers%20of%20Concepts:%20Visual%20Design%20Mining%20for%20Learning%20Color%20Semantics&rft.jtitle=ACM%20transactions%20on%20computer-human%20interaction&rft.au=Jahanian,%20Ali&rft.date=2017-03-01&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.issn=1073-0516&rft.eissn=1557-7325&rft_id=info:doi/10.1145/3009924&rft_dat=%3Ccrossref%3E10_1145_3009924%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c187t-c8ee5730a44f721bc3b22e66f613b7316a8e70c594ebf06cbb3e7333ace51a963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true