Loading…
Automated Quantum Circuit Synthesis and Cost Estimation for the Binary Welded Tree Oracle
Quantum computing is a new computational paradigm that promises an exponential speed-up over classical algorithms. To develop efficient quantum algorithms for problems of a non-deterministic nature, random walk is one of the most successful concepts employed. In this article, we target both continuo...
Saved in:
Published in: | ACM journal on emerging technologies in computing systems 2017-10, Vol.13 (4), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum computing is a new computational paradigm that promises an exponential speed-up over classical algorithms. To develop efficient quantum algorithms for problems of a non-deterministic nature, random walk is one of the most successful concepts employed. In this article, we target both continuous-time and discrete-time random walk in both the classical and quantum regimes. Binary Welded Tree (BWT), or glued tree, is one of the most well-known quantum walk algorithms in the continuous-time domain. Prior work implements quantum walk on the BWT with static welding. In this context, static welding is randomized but case-specific. We propose a solution to automatically generate the circuit for the Oracle for welding. We implement the circuit using the Quantum Assembly Language, which is a language for describing quantum circuits. We then optimize the generated circuit using the Fault-Tolerant Quantum Logic Synthesis tool for any BWT instance. Automatic welding enables us to provide a generalized solution for quantum walk on the BWT. |
---|---|
ISSN: | 1550-4832 1550-4840 |
DOI: | 10.1145/3060582 |