Loading…

Interactive Sound Propagation and Rendering for Large Multi-Source Scenes

We present an approach to generate plausible acoustic effects at interactive rates in large dynamic environments containing many sound sources. Our formulation combines listener-based backward ray tracing with sound source clustering and hybrid audio rendering to handle complex scenes. We present a...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on graphics 2017-08, Vol.36 (4), p.1
Main Authors: Schissler, Carl, Manocha, Dinesh
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an approach to generate plausible acoustic effects at interactive rates in large dynamic environments containing many sound sources. Our formulation combines listener-based backward ray tracing with sound source clustering and hybrid audio rendering to handle complex scenes. We present a new algorithm for dynamic late reverberation that performs high-order ray tracing from the listener against spherical sound sources. We achieve sublinear scaling with the number of sources by clustering distant sound sources and taking relative visibility into account. We also describe a hybrid convolution-based audio rendering technique that can process hundreds of thousands of sound paths at interactive rates. We demonstrate the performance on many indoor and outdoor scenes with up to 200 sound sources. In practice, our algorithm can compute more than 50 reflection orders at interactive rates on a multicore PC, and we observe a 5x speedup over prior geometric sound propagation algorithms.
ISSN:0730-0301
1557-7368
DOI:10.1145/3072959.2943779