Loading…

Control Theoretic Models of Pointing

This article presents an empirical comparison of four models from manual control theory on their ability to model targeting behaviour by human users using a mouse: McRuer’s Crossover, Costello’s Surge, second-order lag (2OL), and the Bang-bang model. Such dynamic models are generative, estimating no...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on computer-human interaction 2017-09, Vol.24 (4), p.1-36
Main Authors: Müller, Jörg, Oulasvirta, Antti, Murray-Smith, Roderick
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents an empirical comparison of four models from manual control theory on their ability to model targeting behaviour by human users using a mouse: McRuer’s Crossover, Costello’s Surge, second-order lag (2OL), and the Bang-bang model. Such dynamic models are generative, estimating not only movement time, but also pointer position, velocity, and acceleration on a moment-to-moment basis. We describe an experimental framework for acquiring pointing actions and automatically fitting the parameters of mathematical models to the empirical data. We present the use of time-series, phase space, and Hooke plot visualisations of the experimental data, to gain insight into human pointing dynamics. We find that the identified control models can generate a range of dynamic behaviours that captures aspects of human pointing behaviour to varying degrees. Conditions with a low index of difficulty (ID) showed poorer fit because their unconstrained nature leads naturally to more behavioural variability. We report on characteristics of human surge behaviour (the initial, ballistic sub-movement) in pointing, as well as differences in a number of controller performance measures, including overshoot, settling time, peak time, and rise time . We describe trade-offs among the models. We conclude that control theory offers a promising complement to Fitts’ law based approaches in HCI, with models providing representations and predictions of human pointing dynamics, which can improve our understanding of pointing and inform design.
ISSN:1073-0516
1557-7325
DOI:10.1145/3121431