Loading…
Shading atlas streaming
Streaming high quality rendering for virtual reality applications requires minimizing perceived latency. We introduce Shading Atlas Streaming (SAS), a novel object-space rendering framework suitable for streaming virtual reality content. SAS decouples server-side shading from client-side rendering,...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Streaming high quality rendering for virtual reality applications requires minimizing perceived latency. We introduce Shading Atlas Streaming (SAS), a novel object-space rendering framework suitable for streaming virtual reality content. SAS decouples server-side shading from client-side rendering, allowing the client to perform framerate upsampling and latency compensation autonomously for short periods of time. The shading information created by the server in object space is temporally coherent and can be efficiently compressed using standard MPEG encoding. Our results show that SAS compares favorably to previous methods for remote image-based rendering in terms of image quality and network bandwidth efficiency. SAS allows highly efficient parallel allocation in a virtualized-texture-like memory hierarchy, solving a common efficiency problem of object-space shading. With SAS, untethered virtual reality headsets can benefit from high quality rendering without paying in increased latency. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/3272127.3275087 |