Loading…
Taylor subsumes Scott, Berry, Kahn and Plotkin
The speculative ambition of replacing the old theory of program approximation based on syntactic continuity with the theory of resource consumption based on Taylor expansion and originating from the differential λ-calculus is nowadays at hand. Using this resource sensitive theory, we provide simple...
Saved in:
Published in: | Proceedings of ACM on programming languages 2020-01, Vol.4 (POPL), p.1-23 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c258t-fcf39627c0c4d031cd5a853dbc71c6f02579e44b7c2718ec864e71b3565eb6c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c258t-fcf39627c0c4d031cd5a853dbc71c6f02579e44b7c2718ec864e71b3565eb6c83 |
container_end_page | 23 |
container_issue | POPL |
container_start_page | 1 |
container_title | Proceedings of ACM on programming languages |
container_volume | 4 |
creator | Barbarossa, Davide Manzonetto, Giulio |
description | The speculative ambition of replacing the old theory of program approximation based on syntactic continuity with the theory of resource consumption based on Taylor expansion and originating from the differential λ-calculus is nowadays at hand. Using this resource sensitive theory, we provide simple proofs of important results in λ-calculus that are usually demonstrated by exploiting Scott’s continuity, Berry’s stability or Kahn and Plotkin’s sequentiality theory. A paradigmatic example is given by the Perpendicular Lines Lemma for the Böhm tree semantics, which is proved here simply by induction, but relying on the main properties of resource approximants: strong normalization, confluence and linearity. |
doi_str_mv | 10.1145/3371069 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3371069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3371069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-fcf39627c0c4d031cd5a853dbc71c6f02579e44b7c2718ec864e71b3565eb6c83</originalsourceid><addsrcrecordid>eNpNj8tKAzEUQIMoWGrxF7Jz06m5uXnNUosvLChY10NyJ8HqdEaS6WL-XsQuXJ2zOnAYuwSxAlD6GtGCMPUJm0lldQVKwuk_P2eLUj6FEFCjcljP2Grrp27IvBxCOexj4W80jOOS38acpyV_9h89933LX7th_Nr1F-ws-a7ExZFz9n5_t10_VpuXh6f1zaYiqd1YJUpYG2lJkGoFArXaO41tIAtkkpDa1lGpYElacJGcUdFCQG10DIYcztnVX5fyUEqOqfnOu73PUwOi-T1tjqf4AztXQzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Taylor subsumes Scott, Berry, Kahn and Plotkin</title><source>ACM Digital Library</source><creator>Barbarossa, Davide ; Manzonetto, Giulio</creator><creatorcontrib>Barbarossa, Davide ; Manzonetto, Giulio</creatorcontrib><description>The speculative ambition of replacing the old theory of program approximation based on syntactic continuity with the theory of resource consumption based on Taylor expansion and originating from the differential λ-calculus is nowadays at hand. Using this resource sensitive theory, we provide simple proofs of important results in λ-calculus that are usually demonstrated by exploiting Scott’s continuity, Berry’s stability or Kahn and Plotkin’s sequentiality theory. A paradigmatic example is given by the Perpendicular Lines Lemma for the Böhm tree semantics, which is proved here simply by induction, but relying on the main properties of resource approximants: strong normalization, confluence and linearity.</description><identifier>ISSN: 2475-1421</identifier><identifier>EISSN: 2475-1421</identifier><identifier>DOI: 10.1145/3371069</identifier><language>eng</language><ispartof>Proceedings of ACM on programming languages, 2020-01, Vol.4 (POPL), p.1-23</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-fcf39627c0c4d031cd5a853dbc71c6f02579e44b7c2718ec864e71b3565eb6c83</citedby><cites>FETCH-LOGICAL-c258t-fcf39627c0c4d031cd5a853dbc71c6f02579e44b7c2718ec864e71b3565eb6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barbarossa, Davide</creatorcontrib><creatorcontrib>Manzonetto, Giulio</creatorcontrib><title>Taylor subsumes Scott, Berry, Kahn and Plotkin</title><title>Proceedings of ACM on programming languages</title><description>The speculative ambition of replacing the old theory of program approximation based on syntactic continuity with the theory of resource consumption based on Taylor expansion and originating from the differential λ-calculus is nowadays at hand. Using this resource sensitive theory, we provide simple proofs of important results in λ-calculus that are usually demonstrated by exploiting Scott’s continuity, Berry’s stability or Kahn and Plotkin’s sequentiality theory. A paradigmatic example is given by the Perpendicular Lines Lemma for the Böhm tree semantics, which is proved here simply by induction, but relying on the main properties of resource approximants: strong normalization, confluence and linearity.</description><issn>2475-1421</issn><issn>2475-1421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNj8tKAzEUQIMoWGrxF7Jz06m5uXnNUosvLChY10NyJ8HqdEaS6WL-XsQuXJ2zOnAYuwSxAlD6GtGCMPUJm0lldQVKwuk_P2eLUj6FEFCjcljP2Grrp27IvBxCOexj4W80jOOS38acpyV_9h89933LX7th_Nr1F-ws-a7ExZFz9n5_t10_VpuXh6f1zaYiqd1YJUpYG2lJkGoFArXaO41tIAtkkpDa1lGpYElacJGcUdFCQG10DIYcztnVX5fyUEqOqfnOu73PUwOi-T1tjqf4AztXQzc</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Barbarossa, Davide</creator><creator>Manzonetto, Giulio</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202001</creationdate><title>Taylor subsumes Scott, Berry, Kahn and Plotkin</title><author>Barbarossa, Davide ; Manzonetto, Giulio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-fcf39627c0c4d031cd5a853dbc71c6f02579e44b7c2718ec864e71b3565eb6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbarossa, Davide</creatorcontrib><creatorcontrib>Manzonetto, Giulio</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of ACM on programming languages</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbarossa, Davide</au><au>Manzonetto, Giulio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taylor subsumes Scott, Berry, Kahn and Plotkin</atitle><jtitle>Proceedings of ACM on programming languages</jtitle><date>2020-01</date><risdate>2020</risdate><volume>4</volume><issue>POPL</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>2475-1421</issn><eissn>2475-1421</eissn><abstract>The speculative ambition of replacing the old theory of program approximation based on syntactic continuity with the theory of resource consumption based on Taylor expansion and originating from the differential λ-calculus is nowadays at hand. Using this resource sensitive theory, we provide simple proofs of important results in λ-calculus that are usually demonstrated by exploiting Scott’s continuity, Berry’s stability or Kahn and Plotkin’s sequentiality theory. A paradigmatic example is given by the Perpendicular Lines Lemma for the Böhm tree semantics, which is proved here simply by induction, but relying on the main properties of resource approximants: strong normalization, confluence and linearity.</abstract><doi>10.1145/3371069</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-1421 |
ispartof | Proceedings of ACM on programming languages, 2020-01, Vol.4 (POPL), p.1-23 |
issn | 2475-1421 2475-1421 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3371069 |
source | ACM Digital Library |
title | Taylor subsumes Scott, Berry, Kahn and Plotkin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taylor%20subsumes%20Scott,%20Berry,%20Kahn%20and%20Plotkin&rft.jtitle=Proceedings%20of%20ACM%20on%20programming%20languages&rft.au=Barbarossa,%20Davide&rft.date=2020-01&rft.volume=4&rft.issue=POPL&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=2475-1421&rft.eissn=2475-1421&rft_id=info:doi/10.1145/3371069&rft_dat=%3Ccrossref%3E10_1145_3371069%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-fcf39627c0c4d031cd5a853dbc71c6f02579e44b7c2718ec864e71b3565eb6c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |