Loading…
Competitive Online Optimization under Inventory Constraints
This paper studies online optimization under inventory (budget) constraints. While online optimization is a well-studied topic, versions with inventory constraints have proven difficult. We consider a formulation of inventory-constrained optimization that is a generalization of the classic one-way t...
Saved in:
Published in: | Performance evaluation review 2019-12, Vol.47 (1), p.35-36 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies online optimization under inventory (budget) constraints. While online optimization is a well-studied topic, versions with inventory constraints have proven difficult. We consider a formulation of inventory-constrained optimization that is a generalization of the classic one-way trading problem and has a wide range of applications. We present a new algorithmic framework, CR-Pursuit, and prove that it achieves the optimal competitive ratio among all deterministic algorithms (up to a problem-dependent constant factor) for inventory-constrained online optimization. Our algorithm and its analysis not only simplify and unify the state-ofthe- art results for the standard one-way trading problem, but they also establish novel bounds for generalizations including concave revenue functions. For example, for one-way trading with price elasticity, CR-Pursuit achieves a competitive ratio within a small additive constant (i.e., 1/3) to the lower bound of ln θ + 1, where θ is the ratio between the maximum and minimum base prices. |
---|---|
ISSN: | 0163-5999 |
DOI: | 10.1145/3376930.3376953 |