Loading…

Heavy-traffic Analysis of the Generalized Switch under Multidimensional State Space Collapse

Stochastic Processing Networks that model wired and wireless networks, and other queueing systems, have been studied in heavytraffic limit under the so-called Complete Resource Pooling (CRP) condition. When the CRP condition is not satisfied, heavy-traffic results are known only in the special case...

Full description

Saved in:
Bibliographic Details
Published in:Performance evaluation review 2020-07, Vol.48 (1), p.33-34
Main Authors: Hurtado-Lange, Daniela, Theja Maguluri, Siva
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stochastic Processing Networks that model wired and wireless networks, and other queueing systems, have been studied in heavytraffic limit under the so-called Complete Resource Pooling (CRP) condition. When the CRP condition is not satisfied, heavy-traffic results are known only in the special case of an input-queued switch and bandwidth-sharing network. In this paper, we consider a very general queueing system called the 'generalized switch' that includes wireless networks under fading, data center networks, input-queued switch, etc. The primary contribution of this paper is to present the exact value of the steadystate mean of certain linear combinations of queue lengths in the heavy-traffic limit under MaxWeight scheduling algorithm. We use the Drift method, and we also present a negative result that it is not possible to obtain the remaining linear combinations (and consequently all the individual mean queue lengths) using this method. We do this by presenting an alternate view of the Drift method in terms of an (under-determined) system of linear equations. Finally, we use this system of equations to obtain upper and lower bounds on all linear combinations of queue lengths.
ISSN:0163-5999
DOI:10.1145/3410048.3410068