Loading…
Heavy-traffic Analysis of the Generalized Switch under Multidimensional State Space Collapse
Stochastic Processing Networks that model wired and wireless networks, and other queueing systems, have been studied in heavytraffic limit under the so-called Complete Resource Pooling (CRP) condition. When the CRP condition is not satisfied, heavy-traffic results are known only in the special case...
Saved in:
Published in: | Performance evaluation review 2020-07, Vol.48 (1), p.33-34 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c868-ab54a4b8a52626339dc653d671307c4296ea4cd3100a6f0bc0b0fc03cad0e903 |
---|---|
cites | cdi_FETCH-LOGICAL-c868-ab54a4b8a52626339dc653d671307c4296ea4cd3100a6f0bc0b0fc03cad0e903 |
container_end_page | 34 |
container_issue | 1 |
container_start_page | 33 |
container_title | Performance evaluation review |
container_volume | 48 |
creator | Hurtado-Lange, Daniela Theja Maguluri, Siva |
description | Stochastic Processing Networks that model wired and wireless networks, and other queueing systems, have been studied in heavytraffic limit under the so-called Complete Resource Pooling (CRP) condition. When the CRP condition is not satisfied, heavy-traffic results are known only in the special case of an input-queued switch and bandwidth-sharing network.
In this paper, we consider a very general queueing system called the 'generalized switch' that includes wireless networks under fading, data center networks, input-queued switch, etc. The primary contribution of this paper is to present the exact value of the steadystate mean of certain linear combinations of queue lengths in the heavy-traffic limit under MaxWeight scheduling algorithm. We use the Drift method, and we also present a negative result that it is not possible to obtain the remaining linear combinations (and consequently all the individual mean queue lengths) using this method. We do this by presenting an alternate view of the Drift method in terms of an (under-determined) system of linear equations. Finally, we use this system of equations to obtain upper and lower bounds on all linear combinations of queue lengths. |
doi_str_mv | 10.1145/3410048.3410068 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3410048_3410068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3410048_3410068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c868-ab54a4b8a52626339dc653d671307c4296ea4cd3100a6f0bc0b0fc03cad0e903</originalsourceid><addsrcrecordid>eNotkLFOwzAURT2ARCnMrP6BtM-x4yRjFUGLVMQQRqToxX5WjdKkslNQ-HoKZDrTvdI5jD0IWAmhsrVUAkAVqz_q4ootQGiZZGVZ3rDbGD8ARJ6KYsHed4SfUzIGdM4bvumxm6KPfHB8PBDfUk8BO_9NltdffjQHfu4tBf5y7kZv_ZH66IfLiNcjjsTrExri1dB1eIp0x64ddpHuZy5Z_fT4Vu2S_ev2udrsE1PoIsE2U6jaArNUp1rK0hqdSatzISE3Ki01oTJWXlRQO2gNtOAMSIMWqAS5ZOv_VxOGGAO55hT8EcPUCGh-czRzjmbOIX8A0_JVJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heavy-traffic Analysis of the Generalized Switch under Multidimensional State Space Collapse</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Hurtado-Lange, Daniela ; Theja Maguluri, Siva</creator><creatorcontrib>Hurtado-Lange, Daniela ; Theja Maguluri, Siva</creatorcontrib><description>Stochastic Processing Networks that model wired and wireless networks, and other queueing systems, have been studied in heavytraffic limit under the so-called Complete Resource Pooling (CRP) condition. When the CRP condition is not satisfied, heavy-traffic results are known only in the special case of an input-queued switch and bandwidth-sharing network.
In this paper, we consider a very general queueing system called the 'generalized switch' that includes wireless networks under fading, data center networks, input-queued switch, etc. The primary contribution of this paper is to present the exact value of the steadystate mean of certain linear combinations of queue lengths in the heavy-traffic limit under MaxWeight scheduling algorithm. We use the Drift method, and we also present a negative result that it is not possible to obtain the remaining linear combinations (and consequently all the individual mean queue lengths) using this method. We do this by presenting an alternate view of the Drift method in terms of an (under-determined) system of linear equations. Finally, we use this system of equations to obtain upper and lower bounds on all linear combinations of queue lengths.</description><identifier>ISSN: 0163-5999</identifier><identifier>DOI: 10.1145/3410048.3410068</identifier><language>eng</language><ispartof>Performance evaluation review, 2020-07, Vol.48 (1), p.33-34</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c868-ab54a4b8a52626339dc653d671307c4296ea4cd3100a6f0bc0b0fc03cad0e903</citedby><cites>FETCH-LOGICAL-c868-ab54a4b8a52626339dc653d671307c4296ea4cd3100a6f0bc0b0fc03cad0e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hurtado-Lange, Daniela</creatorcontrib><creatorcontrib>Theja Maguluri, Siva</creatorcontrib><title>Heavy-traffic Analysis of the Generalized Switch under Multidimensional State Space Collapse</title><title>Performance evaluation review</title><description>Stochastic Processing Networks that model wired and wireless networks, and other queueing systems, have been studied in heavytraffic limit under the so-called Complete Resource Pooling (CRP) condition. When the CRP condition is not satisfied, heavy-traffic results are known only in the special case of an input-queued switch and bandwidth-sharing network.
In this paper, we consider a very general queueing system called the 'generalized switch' that includes wireless networks under fading, data center networks, input-queued switch, etc. The primary contribution of this paper is to present the exact value of the steadystate mean of certain linear combinations of queue lengths in the heavy-traffic limit under MaxWeight scheduling algorithm. We use the Drift method, and we also present a negative result that it is not possible to obtain the remaining linear combinations (and consequently all the individual mean queue lengths) using this method. We do this by presenting an alternate view of the Drift method in terms of an (under-determined) system of linear equations. Finally, we use this system of equations to obtain upper and lower bounds on all linear combinations of queue lengths.</description><issn>0163-5999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURT2ARCnMrP6BtM-x4yRjFUGLVMQQRqToxX5WjdKkslNQ-HoKZDrTvdI5jD0IWAmhsrVUAkAVqz_q4ootQGiZZGVZ3rDbGD8ARJ6KYsHed4SfUzIGdM4bvumxm6KPfHB8PBDfUk8BO_9NltdffjQHfu4tBf5y7kZv_ZH66IfLiNcjjsTrExri1dB1eIp0x64ddpHuZy5Z_fT4Vu2S_ev2udrsE1PoIsE2U6jaArNUp1rK0hqdSatzISE3Ki01oTJWXlRQO2gNtOAMSIMWqAS5ZOv_VxOGGAO55hT8EcPUCGh-czRzjmbOIX8A0_JVJQ</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>Hurtado-Lange, Daniela</creator><creator>Theja Maguluri, Siva</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200708</creationdate><title>Heavy-traffic Analysis of the Generalized Switch under Multidimensional State Space Collapse</title><author>Hurtado-Lange, Daniela ; Theja Maguluri, Siva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c868-ab54a4b8a52626339dc653d671307c4296ea4cd3100a6f0bc0b0fc03cad0e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hurtado-Lange, Daniela</creatorcontrib><creatorcontrib>Theja Maguluri, Siva</creatorcontrib><collection>CrossRef</collection><jtitle>Performance evaluation review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurtado-Lange, Daniela</au><au>Theja Maguluri, Siva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy-traffic Analysis of the Generalized Switch under Multidimensional State Space Collapse</atitle><jtitle>Performance evaluation review</jtitle><date>2020-07-08</date><risdate>2020</risdate><volume>48</volume><issue>1</issue><spage>33</spage><epage>34</epage><pages>33-34</pages><issn>0163-5999</issn><abstract>Stochastic Processing Networks that model wired and wireless networks, and other queueing systems, have been studied in heavytraffic limit under the so-called Complete Resource Pooling (CRP) condition. When the CRP condition is not satisfied, heavy-traffic results are known only in the special case of an input-queued switch and bandwidth-sharing network.
In this paper, we consider a very general queueing system called the 'generalized switch' that includes wireless networks under fading, data center networks, input-queued switch, etc. The primary contribution of this paper is to present the exact value of the steadystate mean of certain linear combinations of queue lengths in the heavy-traffic limit under MaxWeight scheduling algorithm. We use the Drift method, and we also present a negative result that it is not possible to obtain the remaining linear combinations (and consequently all the individual mean queue lengths) using this method. We do this by presenting an alternate view of the Drift method in terms of an (under-determined) system of linear equations. Finally, we use this system of equations to obtain upper and lower bounds on all linear combinations of queue lengths.</abstract><doi>10.1145/3410048.3410068</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-5999 |
ispartof | Performance evaluation review, 2020-07, Vol.48 (1), p.33-34 |
issn | 0163-5999 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3410048_3410068 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Heavy-traffic Analysis of the Generalized Switch under Multidimensional State Space Collapse |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy-traffic%20Analysis%20of%20the%20Generalized%20Switch%20under%20Multidimensional%20State%20Space%20Collapse&rft.jtitle=Performance%20evaluation%20review&rft.au=Hurtado-Lange,%20Daniela&rft.date=2020-07-08&rft.volume=48&rft.issue=1&rft.spage=33&rft.epage=34&rft.pages=33-34&rft.issn=0163-5999&rft_id=info:doi/10.1145/3410048.3410068&rft_dat=%3Ccrossref%3E10_1145_3410048_3410068%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c868-ab54a4b8a52626339dc653d671307c4296ea4cd3100a6f0bc0b0fc03cad0e903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |