Loading…
Explanation Strategies as an Empirical-Analytical Lens for Socio-Technical Contextualization of Machine Learning Interpretability
During a research project in which we developed a machine learning (ML) driven visualization system for non-ML experts, we reflected on interpretability research in ML, computer-supported collaborative work and human-computer interaction. We found that while there are manifold technical approaches,...
Saved in:
Published in: | Proceedings of the ACM on human-computer interaction 2022-01, Vol.6 (GROUP), p.1-25, Article 39 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a1928-ad94fec98a1cb1c7aed521e48b2039fc21eedbc988d2d6cb5cd3821dbbcc91233 |
---|---|
cites | cdi_FETCH-LOGICAL-a1928-ad94fec98a1cb1c7aed521e48b2039fc21eedbc988d2d6cb5cd3821dbbcc91233 |
container_end_page | 25 |
container_issue | GROUP |
container_start_page | 1 |
container_title | Proceedings of the ACM on human-computer interaction |
container_volume | 6 |
creator | Benjamin, Jesse Josua Kinkeldey, Christoph Müller-Birn, Claudia Korjakow, Tim Herbst, Eva-Maria |
description | During a research project in which we developed a machine learning (ML) driven visualization system for non-ML experts, we reflected on interpretability research in ML, computer-supported collaborative work and human-computer interaction. We found that while there are manifold technical approaches, these often focus on ML experts and are evaluated in decontextualized empirical studies. We hypothesized that participatory design research may support the understanding of stakeholders' situated sense-making in our project, yet, found guidance regarding ML interpretability inexhaustive. Building on philosophy of technology, we formulated explanation strategies as an empirical-analytical lens explicating how technical explanations mediate the contextual preferences concerning people's interpretations. In this paper, we contribute a report of our proof-of-concept use of explanation strategies to analyze a co-design workshop with non-ML experts, methodological implications for participatory design research, design implications for explanations for non-ML experts and suggest further investigation of technological mediation theories in the ML interpretability space. |
doi_str_mv | 10.1145/3492858 |
format | article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3492858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3492858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1928-ad94fec98a1cb1c7aed521e48b2039fc21eedbc988d2d6cb5cd3821dbbcc91233</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrx7ik3T6tJdmOzx1KqFioeWs_L5GPbyDZZkgitN_9zU1tFGJgH7zcP5iF0TckdpRW_L6uaCS7O0IDxcVkQWrHzf_oSjWJ8J4RQwQmv2QB9zXZ9Bw6S9Q4vU4Bk1tZEDHkcnm17G6yCrpg46PbpIPHCuIhbH_DSK-uLlVEb92NMvUtmlz6gs5_HQN_iF1Ab60y-guCsW-N5hkIfTAJpO5v2V-iihS6a0WkP0dvjbDV9LhavT_PpZFEAzT8VoOuqNaoWQJWkagxGc0ZNJSQjZd2qrI2W2Rea6QcludKlYFRLqVRNWVkO0e0xVwUfYzBt0we7hbBvKGkO5TWn8jJ5cyRBbf-gX_MbAR5tAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explanation Strategies as an Empirical-Analytical Lens for Socio-Technical Contextualization of Machine Learning Interpretability</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Benjamin, Jesse Josua ; Kinkeldey, Christoph ; Müller-Birn, Claudia ; Korjakow, Tim ; Herbst, Eva-Maria</creator><creatorcontrib>Benjamin, Jesse Josua ; Kinkeldey, Christoph ; Müller-Birn, Claudia ; Korjakow, Tim ; Herbst, Eva-Maria</creatorcontrib><description>During a research project in which we developed a machine learning (ML) driven visualization system for non-ML experts, we reflected on interpretability research in ML, computer-supported collaborative work and human-computer interaction. We found that while there are manifold technical approaches, these often focus on ML experts and are evaluated in decontextualized empirical studies. We hypothesized that participatory design research may support the understanding of stakeholders' situated sense-making in our project, yet, found guidance regarding ML interpretability inexhaustive. Building on philosophy of technology, we formulated explanation strategies as an empirical-analytical lens explicating how technical explanations mediate the contextual preferences concerning people's interpretations. In this paper, we contribute a report of our proof-of-concept use of explanation strategies to analyze a co-design workshop with non-ML experts, methodological implications for participatory design research, design implications for explanations for non-ML experts and suggest further investigation of technological mediation theories in the ML interpretability space.</description><identifier>ISSN: 2573-0142</identifier><identifier>EISSN: 2573-0142</identifier><identifier>DOI: 10.1145/3492858</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Computing methodologies ; Human-centered computing ; Human-centered computing / Human computer interaction (HCI)</subject><ispartof>Proceedings of the ACM on human-computer interaction, 2022-01, Vol.6 (GROUP), p.1-25, Article 39</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1928-ad94fec98a1cb1c7aed521e48b2039fc21eedbc988d2d6cb5cd3821dbbcc91233</citedby><cites>FETCH-LOGICAL-a1928-ad94fec98a1cb1c7aed521e48b2039fc21eedbc988d2d6cb5cd3821dbbcc91233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benjamin, Jesse Josua</creatorcontrib><creatorcontrib>Kinkeldey, Christoph</creatorcontrib><creatorcontrib>Müller-Birn, Claudia</creatorcontrib><creatorcontrib>Korjakow, Tim</creatorcontrib><creatorcontrib>Herbst, Eva-Maria</creatorcontrib><title>Explanation Strategies as an Empirical-Analytical Lens for Socio-Technical Contextualization of Machine Learning Interpretability</title><title>Proceedings of the ACM on human-computer interaction</title><addtitle>ACM PACMHCI</addtitle><description>During a research project in which we developed a machine learning (ML) driven visualization system for non-ML experts, we reflected on interpretability research in ML, computer-supported collaborative work and human-computer interaction. We found that while there are manifold technical approaches, these often focus on ML experts and are evaluated in decontextualized empirical studies. We hypothesized that participatory design research may support the understanding of stakeholders' situated sense-making in our project, yet, found guidance regarding ML interpretability inexhaustive. Building on philosophy of technology, we formulated explanation strategies as an empirical-analytical lens explicating how technical explanations mediate the contextual preferences concerning people's interpretations. In this paper, we contribute a report of our proof-of-concept use of explanation strategies to analyze a co-design workshop with non-ML experts, methodological implications for participatory design research, design implications for explanations for non-ML experts and suggest further investigation of technological mediation theories in the ML interpretability space.</description><subject>Computing methodologies</subject><subject>Human-centered computing</subject><subject>Human-centered computing / Human computer interaction (HCI)</subject><issn>2573-0142</issn><issn>2573-0142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWGrx7ik3T6tJdmOzx1KqFioeWs_L5GPbyDZZkgitN_9zU1tFGJgH7zcP5iF0TckdpRW_L6uaCS7O0IDxcVkQWrHzf_oSjWJ8J4RQwQmv2QB9zXZ9Bw6S9Q4vU4Bk1tZEDHkcnm17G6yCrpg46PbpIPHCuIhbH_DSK-uLlVEb92NMvUtmlz6gs5_HQN_iF1Ab60y-guCsW-N5hkIfTAJpO5v2V-iihS6a0WkP0dvjbDV9LhavT_PpZFEAzT8VoOuqNaoWQJWkagxGc0ZNJSQjZd2qrI2W2Rea6QcludKlYFRLqVRNWVkO0e0xVwUfYzBt0we7hbBvKGkO5TWn8jJ5cyRBbf-gX_MbAR5tAw</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Benjamin, Jesse Josua</creator><creator>Kinkeldey, Christoph</creator><creator>Müller-Birn, Claudia</creator><creator>Korjakow, Tim</creator><creator>Herbst, Eva-Maria</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220114</creationdate><title>Explanation Strategies as an Empirical-Analytical Lens for Socio-Technical Contextualization of Machine Learning Interpretability</title><author>Benjamin, Jesse Josua ; Kinkeldey, Christoph ; Müller-Birn, Claudia ; Korjakow, Tim ; Herbst, Eva-Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1928-ad94fec98a1cb1c7aed521e48b2039fc21eedbc988d2d6cb5cd3821dbbcc91233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computing methodologies</topic><topic>Human-centered computing</topic><topic>Human-centered computing / Human computer interaction (HCI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benjamin, Jesse Josua</creatorcontrib><creatorcontrib>Kinkeldey, Christoph</creatorcontrib><creatorcontrib>Müller-Birn, Claudia</creatorcontrib><creatorcontrib>Korjakow, Tim</creatorcontrib><creatorcontrib>Herbst, Eva-Maria</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ACM on human-computer interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benjamin, Jesse Josua</au><au>Kinkeldey, Christoph</au><au>Müller-Birn, Claudia</au><au>Korjakow, Tim</au><au>Herbst, Eva-Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explanation Strategies as an Empirical-Analytical Lens for Socio-Technical Contextualization of Machine Learning Interpretability</atitle><jtitle>Proceedings of the ACM on human-computer interaction</jtitle><stitle>ACM PACMHCI</stitle><date>2022-01-14</date><risdate>2022</risdate><volume>6</volume><issue>GROUP</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><artnum>39</artnum><issn>2573-0142</issn><eissn>2573-0142</eissn><abstract>During a research project in which we developed a machine learning (ML) driven visualization system for non-ML experts, we reflected on interpretability research in ML, computer-supported collaborative work and human-computer interaction. We found that while there are manifold technical approaches, these often focus on ML experts and are evaluated in decontextualized empirical studies. We hypothesized that participatory design research may support the understanding of stakeholders' situated sense-making in our project, yet, found guidance regarding ML interpretability inexhaustive. Building on philosophy of technology, we formulated explanation strategies as an empirical-analytical lens explicating how technical explanations mediate the contextual preferences concerning people's interpretations. In this paper, we contribute a report of our proof-of-concept use of explanation strategies to analyze a co-design workshop with non-ML experts, methodological implications for participatory design research, design implications for explanations for non-ML experts and suggest further investigation of technological mediation theories in the ML interpretability space.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3492858</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2573-0142 |
ispartof | Proceedings of the ACM on human-computer interaction, 2022-01, Vol.6 (GROUP), p.1-25, Article 39 |
issn | 2573-0142 2573-0142 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3492858 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Computing methodologies Human-centered computing Human-centered computing / Human computer interaction (HCI) |
title | Explanation Strategies as an Empirical-Analytical Lens for Socio-Technical Contextualization of Machine Learning Interpretability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explanation%20Strategies%20as%20an%20Empirical-Analytical%20Lens%20for%20Socio-Technical%20Contextualization%20of%20Machine%20Learning%20Interpretability&rft.jtitle=Proceedings%20of%20the%20ACM%20on%20human-computer%20interaction&rft.au=Benjamin,%20Jesse%20Josua&rft.date=2022-01-14&rft.volume=6&rft.issue=GROUP&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.artnum=39&rft.issn=2573-0142&rft.eissn=2573-0142&rft_id=info:doi/10.1145/3492858&rft_dat=%3Cacm_cross%3E3492858%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a1928-ad94fec98a1cb1c7aed521e48b2039fc21eedbc988d2d6cb5cd3821dbbcc91233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |