Loading…
Analyzing the Impact of COVID-19 Control Policies on Campus Occupancy and Mobility via WiFi Sensing
Mobile sensing has played a key role in providing digital solutions to aid with COVID-19 containment policies, primarily to automate contact tracing and social distancing measures. As more and more countries reopen from lockdowns, there remains a pressing need to minimize crowd movements and interac...
Saved in:
Published in: | ACM transactions on spatial algorithms and systems 2022-09, Vol.8 (3), p.1-26 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1734-8f3e5536aa1a465b0b81c310c2842e8dc6d16fb89004e9e9b5dced4bd0682ea43 |
---|---|
cites | cdi_FETCH-LOGICAL-c1734-8f3e5536aa1a465b0b81c310c2842e8dc6d16fb89004e9e9b5dced4bd0682ea43 |
container_end_page | 26 |
container_issue | 3 |
container_start_page | 1 |
container_title | ACM transactions on spatial algorithms and systems |
container_volume | 8 |
creator | Zakaria, Camellia Trivedi, Amee Cecchet, Emmanuel Chee, Michael Shenoy, Prashant Balan, Rajesh |
description | Mobile sensing has played a key role in providing digital solutions to aid with
COVID-19
containment policies, primarily to automate contact tracing and social distancing measures. As more and more countries reopen from lockdowns, there remains a pressing need to minimize crowd movements and interactions, particularly in enclosed spaces. Many
COVID-19
technology solutions leverage positioning systems, generally using Bluetooth and GPS, and can theoretically be adapted to monitor safety compliance within dedicated environments. However, they may not be the ideal modalities for indoor positioning. This article conjectures that analyzing user occupancy and mobility via deployed WiFi infrastructure can help institutions monitor and maintain safety compliance according to the public health guidelines. Using smartphones as a proxy for user location, our analysis demonstrates how coarse-grained WiFi data can sufficiently reflect the indoor occupancy spectrum when different
COVID-19
policies were enacted. Our work analyzes staff and students’ mobility data from three university campuses. Two of these campuses are in Singapore, and the third is in the Northeastern United States. Our results show that online learning, split-team, and other space management policies effectively lower occupancy. However, they do not change the mobility for individuals transitioning between spaces. We demonstrate how this data source can be a practical application for institutional crowd control and discuss the implications of our findings for policymaking. |
doi_str_mv | 10.1145/3516524 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3516524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3516524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1734-8f3e5536aa1a465b0b81c310c2842e8dc6d16fb89004e9e9b5dced4bd0682ea43</originalsourceid><addsrcrecordid>eNo9kMtKxDAUQIMoOIyDv3B3rqq5ebVdDtXRwkgFX8uSpqlGOklpOkL9ehUHV-eszuIQco70ElHIKy5RSSaOyILxVCSUKzz-d8lPySrGD0opSsVkmi-IWXvdz1_Ov8H0bqHcDdpMEDooqpfyOsEciuCnMfTwEHpnnI0QPBR6N-wjVMbsB-3NDNq3cB8a17tphk-n4dVtHDxaH3_KZ-Sk0320qwOX5Hlz81TcJdvqtizW28RgykWSddxKyZXWqIWSDW0yNBypYZlgNmuNalF1TZZTKmxu80a2xraiaanKmNWCL8nFX9eMIcbRdvUwup0e5xpp_bunPuzh3w3yVbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analyzing the Impact of COVID-19 Control Policies on Campus Occupancy and Mobility via WiFi Sensing</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Zakaria, Camellia ; Trivedi, Amee ; Cecchet, Emmanuel ; Chee, Michael ; Shenoy, Prashant ; Balan, Rajesh</creator><creatorcontrib>Zakaria, Camellia ; Trivedi, Amee ; Cecchet, Emmanuel ; Chee, Michael ; Shenoy, Prashant ; Balan, Rajesh</creatorcontrib><description>Mobile sensing has played a key role in providing digital solutions to aid with
COVID-19
containment policies, primarily to automate contact tracing and social distancing measures. As more and more countries reopen from lockdowns, there remains a pressing need to minimize crowd movements and interactions, particularly in enclosed spaces. Many
COVID-19
technology solutions leverage positioning systems, generally using Bluetooth and GPS, and can theoretically be adapted to monitor safety compliance within dedicated environments. However, they may not be the ideal modalities for indoor positioning. This article conjectures that analyzing user occupancy and mobility via deployed WiFi infrastructure can help institutions monitor and maintain safety compliance according to the public health guidelines. Using smartphones as a proxy for user location, our analysis demonstrates how coarse-grained WiFi data can sufficiently reflect the indoor occupancy spectrum when different
COVID-19
policies were enacted. Our work analyzes staff and students’ mobility data from three university campuses. Two of these campuses are in Singapore, and the third is in the Northeastern United States. Our results show that online learning, split-team, and other space management policies effectively lower occupancy. However, they do not change the mobility for individuals transitioning between spaces. We demonstrate how this data source can be a practical application for institutional crowd control and discuss the implications of our findings for policymaking.</description><identifier>ISSN: 2374-0353</identifier><identifier>EISSN: 2374-0361</identifier><identifier>DOI: 10.1145/3516524</identifier><language>eng</language><ispartof>ACM transactions on spatial algorithms and systems, 2022-09, Vol.8 (3), p.1-26</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1734-8f3e5536aa1a465b0b81c310c2842e8dc6d16fb89004e9e9b5dced4bd0682ea43</citedby><cites>FETCH-LOGICAL-c1734-8f3e5536aa1a465b0b81c310c2842e8dc6d16fb89004e9e9b5dced4bd0682ea43</cites><orcidid>0000-0003-4520-9783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zakaria, Camellia</creatorcontrib><creatorcontrib>Trivedi, Amee</creatorcontrib><creatorcontrib>Cecchet, Emmanuel</creatorcontrib><creatorcontrib>Chee, Michael</creatorcontrib><creatorcontrib>Shenoy, Prashant</creatorcontrib><creatorcontrib>Balan, Rajesh</creatorcontrib><title>Analyzing the Impact of COVID-19 Control Policies on Campus Occupancy and Mobility via WiFi Sensing</title><title>ACM transactions on spatial algorithms and systems</title><description>Mobile sensing has played a key role in providing digital solutions to aid with
COVID-19
containment policies, primarily to automate contact tracing and social distancing measures. As more and more countries reopen from lockdowns, there remains a pressing need to minimize crowd movements and interactions, particularly in enclosed spaces. Many
COVID-19
technology solutions leverage positioning systems, generally using Bluetooth and GPS, and can theoretically be adapted to monitor safety compliance within dedicated environments. However, they may not be the ideal modalities for indoor positioning. This article conjectures that analyzing user occupancy and mobility via deployed WiFi infrastructure can help institutions monitor and maintain safety compliance according to the public health guidelines. Using smartphones as a proxy for user location, our analysis demonstrates how coarse-grained WiFi data can sufficiently reflect the indoor occupancy spectrum when different
COVID-19
policies were enacted. Our work analyzes staff and students’ mobility data from three university campuses. Two of these campuses are in Singapore, and the third is in the Northeastern United States. Our results show that online learning, split-team, and other space management policies effectively lower occupancy. However, they do not change the mobility for individuals transitioning between spaces. We demonstrate how this data source can be a practical application for institutional crowd control and discuss the implications of our findings for policymaking.</description><issn>2374-0353</issn><issn>2374-0361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKxDAUQIMoOIyDv3B3rqq5ebVdDtXRwkgFX8uSpqlGOklpOkL9ehUHV-eszuIQco70ElHIKy5RSSaOyILxVCSUKzz-d8lPySrGD0opSsVkmi-IWXvdz1_Ov8H0bqHcDdpMEDooqpfyOsEciuCnMfTwEHpnnI0QPBR6N-wjVMbsB-3NDNq3cB8a17tphk-n4dVtHDxaH3_KZ-Sk0320qwOX5Hlz81TcJdvqtizW28RgykWSddxKyZXWqIWSDW0yNBypYZlgNmuNalF1TZZTKmxu80a2xraiaanKmNWCL8nFX9eMIcbRdvUwup0e5xpp_bunPuzh3w3yVbA</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Zakaria, Camellia</creator><creator>Trivedi, Amee</creator><creator>Cecchet, Emmanuel</creator><creator>Chee, Michael</creator><creator>Shenoy, Prashant</creator><creator>Balan, Rajesh</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4520-9783</orcidid></search><sort><creationdate>20220930</creationdate><title>Analyzing the Impact of COVID-19 Control Policies on Campus Occupancy and Mobility via WiFi Sensing</title><author>Zakaria, Camellia ; Trivedi, Amee ; Cecchet, Emmanuel ; Chee, Michael ; Shenoy, Prashant ; Balan, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1734-8f3e5536aa1a465b0b81c310c2842e8dc6d16fb89004e9e9b5dced4bd0682ea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakaria, Camellia</creatorcontrib><creatorcontrib>Trivedi, Amee</creatorcontrib><creatorcontrib>Cecchet, Emmanuel</creatorcontrib><creatorcontrib>Chee, Michael</creatorcontrib><creatorcontrib>Shenoy, Prashant</creatorcontrib><creatorcontrib>Balan, Rajesh</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on spatial algorithms and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakaria, Camellia</au><au>Trivedi, Amee</au><au>Cecchet, Emmanuel</au><au>Chee, Michael</au><au>Shenoy, Prashant</au><au>Balan, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Impact of COVID-19 Control Policies on Campus Occupancy and Mobility via WiFi Sensing</atitle><jtitle>ACM transactions on spatial algorithms and systems</jtitle><date>2022-09-30</date><risdate>2022</risdate><volume>8</volume><issue>3</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>2374-0353</issn><eissn>2374-0361</eissn><abstract>Mobile sensing has played a key role in providing digital solutions to aid with
COVID-19
containment policies, primarily to automate contact tracing and social distancing measures. As more and more countries reopen from lockdowns, there remains a pressing need to minimize crowd movements and interactions, particularly in enclosed spaces. Many
COVID-19
technology solutions leverage positioning systems, generally using Bluetooth and GPS, and can theoretically be adapted to monitor safety compliance within dedicated environments. However, they may not be the ideal modalities for indoor positioning. This article conjectures that analyzing user occupancy and mobility via deployed WiFi infrastructure can help institutions monitor and maintain safety compliance according to the public health guidelines. Using smartphones as a proxy for user location, our analysis demonstrates how coarse-grained WiFi data can sufficiently reflect the indoor occupancy spectrum when different
COVID-19
policies were enacted. Our work analyzes staff and students’ mobility data from three university campuses. Two of these campuses are in Singapore, and the third is in the Northeastern United States. Our results show that online learning, split-team, and other space management policies effectively lower occupancy. However, they do not change the mobility for individuals transitioning between spaces. We demonstrate how this data source can be a practical application for institutional crowd control and discuss the implications of our findings for policymaking.</abstract><doi>10.1145/3516524</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4520-9783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-0353 |
ispartof | ACM transactions on spatial algorithms and systems, 2022-09, Vol.8 (3), p.1-26 |
issn | 2374-0353 2374-0361 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3516524 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Analyzing the Impact of COVID-19 Control Policies on Campus Occupancy and Mobility via WiFi Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Impact%20of%20COVID-19%20Control%20Policies%20on%20Campus%20Occupancy%20and%20Mobility%20via%20WiFi%20Sensing&rft.jtitle=ACM%20transactions%20on%20spatial%20algorithms%20and%20systems&rft.au=Zakaria,%20Camellia&rft.date=2022-09-30&rft.volume=8&rft.issue=3&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=2374-0353&rft.eissn=2374-0361&rft_id=info:doi/10.1145/3516524&rft_dat=%3Ccrossref%3E10_1145_3516524%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1734-8f3e5536aa1a465b0b81c310c2842e8dc6d16fb89004e9e9b5dced4bd0682ea43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |