Loading…
Data-driven lemma synthesis for interactive proofs
Interactive proofs of theorems often require auxiliary helper lemmas to prove the desired theorem. Existing approaches for automatically synthesizing helper lemmas fall into two broad categories. Some approaches are goal-directed, producing lemmas specifically to help a user make progress from a giv...
Saved in:
Published in: | Proceedings of ACM on programming languages 2022-10, Vol.6 (OOPSLA2), p.505-531 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interactive proofs of theorems often require auxiliary helper lemmas to prove the desired theorem. Existing approaches for automatically synthesizing helper lemmas fall into two broad categories. Some approaches are goal-directed, producing lemmas specifically to help a user make progress from a given proof state, but they have limited expressiveness in terms of the lemmas that can be produced. Other approaches are highly expressive, able to generate arbitrary lemmas from a given grammar, but they are completely undirected and hence not amenable to interactive usage.
In this paper, we develop an approach to lemma synthesis that is both goal-directed and expressive.
The key novelty is a technique for reducing lemma synthesis to a data-driven program synthesis problem, whereby examples for synthesis are generated from the current proof state. We also describe a technique to systematically introduce new variables for lemma synthesis, as well as techniques for filtering and ranking candidate lemmas for presentation to the user. We implement these ideas in a tool called lfind, which can be run as a Coq tactic. In an evaluation on four benchmark suites, lfind produces useful lemmas in 68% of the cases where a human prover used a lemma to make progress. In these cases lfind synthesizes a lemma that either enables a fully automated proof of the original goal or that matches the human-provided lemma. |
---|---|
ISSN: | 2475-1421 2475-1421 |
DOI: | 10.1145/3563306 |