Loading…

Uncertainty-Aware Robustness Assessment of Industrial Elevator Systems

Industrial elevator systems are commonly used software systems in our daily lives, which operate in uncertain environments such as unpredictable passenger traffic, uncertain passenger attributes and behaviors, and hardware delays. Understanding and assessing the robustness of such systems under vari...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on software engineering and methodology 2023-05, Vol.32 (4), p.1-51, Article 95
Main Authors: Han, Liping, Ali, Shaukat, Yue, Tao, Arrieta, Aitor, Arratibel, Maite
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Industrial elevator systems are commonly used software systems in our daily lives, which operate in uncertain environments such as unpredictable passenger traffic, uncertain passenger attributes and behaviors, and hardware delays. Understanding and assessing the robustness of such systems under various uncertainties enable system designers to reason about uncertainties, especially those leading to low system robustness, and consequently improve their designs and implementations in terms of handling uncertainties. To this end, we present a comprehensive empirical study conducted with industrial elevator systems provided by our industrial partner Orona, which focuses on assessing the robustness of a dispatcher—that is, a software component responsible for elevators’ optimal scheduling. In total, we studied 90 industrial dispatchers in our empirical study. Based on the experience gained from the study, we derived an uncertainty-aware robustness assessment method (named UncerRobua) comprising a set of guidelines on how to conduct the robustness assessment and a newly proposed ranking algorithm, for supporting the robustness assessment of industrial elevator systems against uncertainties.
ISSN:1049-331X
1557-7392
DOI:10.1145/3576041