Loading…
DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes
Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the p...
Saved in:
Published in: | ACM transactions on computing for healthcare 2023-04, Vol.4 (2), p.1-43, Article 13 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433 |
---|---|
cites | cdi_FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433 |
container_end_page | 43 |
container_issue | 2 |
container_start_page | 1 |
container_title | ACM transactions on computing for healthcare |
container_volume | 4 |
creator | Bardram, Jakob E. Cramer-Petersen, Claus Maxhuni, Alban Christensen, Mads V. S. Bækgaard, Per Persson, Dan R. Lind, Nanna Christensen, Merete B. Nørgaard, Kirsten Khakurel, Jayden Skinner, Timothy C. Kownatka, Dagmar Jones, Allan |
description | Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the patient and healthcare professionals. This article presents DiaFocus, which is a mobile health sensing application for long-term ambulatory management of T2D. DiaFocus supports an adaptive collection of physiological, behavioral, and contextual data in combination with ecological assessments of psycho-social factors. This data is used for improving patient-clinician communication during consultations. DiaFocus is built using a generic data collection framework for mobile and wearable sensing and is highly extensible and customizable. We deployed DiaFocus in a 6-week feasibility study involving 12 patients with T2D. The patients found the DiaFocus approach and system useful and usable for diabetes management. Most patients would use such a system, if available as part of their treatment. Analysis of the collected data shows that mobile sensing is feasible for longitudinal ambulatory assessment of T2D, and helped identify the most appropriate target users being early diagnosed and technically literate T2D patients. |
doi_str_mv | 10.1145/3586579 |
format | article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3586579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3586579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EElWp2Jm8MQXsOD7HbFGhFCkIhjBHV-fSBiVxFQek_ntaWpju031Pd9Jj7FqKOykTfa90CtrYMzaJQZkoFVqeH7KVkbTaXLJZCJ9CiFhJlWiYsOaxwYV3X-GBZ_ydhuB7bPmSsB03vCC36X3r1zte-4FnFW7H5pt4FgKF0FE_8qbnue_XUUFDx1-xxzX97n3Ni92WeMz3D1Y0UrhiFzW2gWanOWUfi6divozyt-eXeZZHKG1sI0sWwTlpAERlVilIBRgrghSMdJoqWzlhBWCCCswKrZK1Aaq1jQXYRKkpuz3edYMPYaC63A5Nh8OulKI8SCpPkvbkzZFE1_1Df-UPIuBf3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Bardram, Jakob E. ; Cramer-Petersen, Claus ; Maxhuni, Alban ; Christensen, Mads V. S. ; Bækgaard, Per ; Persson, Dan R. ; Lind, Nanna ; Christensen, Merete B. ; Nørgaard, Kirsten ; Khakurel, Jayden ; Skinner, Timothy C. ; Kownatka, Dagmar ; Jones, Allan</creator><creatorcontrib>Bardram, Jakob E. ; Cramer-Petersen, Claus ; Maxhuni, Alban ; Christensen, Mads V. S. ; Bækgaard, Per ; Persson, Dan R. ; Lind, Nanna ; Christensen, Merete B. ; Nørgaard, Kirsten ; Khakurel, Jayden ; Skinner, Timothy C. ; Kownatka, Dagmar ; Jones, Allan</creatorcontrib><description>Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the patient and healthcare professionals. This article presents DiaFocus, which is a mobile health sensing application for long-term ambulatory management of T2D. DiaFocus supports an adaptive collection of physiological, behavioral, and contextual data in combination with ecological assessments of psycho-social factors. This data is used for improving patient-clinician communication during consultations. DiaFocus is built using a generic data collection framework for mobile and wearable sensing and is highly extensible and customizable. We deployed DiaFocus in a 6-week feasibility study involving 12 patients with T2D. The patients found the DiaFocus approach and system useful and usable for diabetes management. Most patients would use such a system, if available as part of their treatment. Analysis of the collected data shows that mobile sensing is feasible for longitudinal ambulatory assessment of T2D, and helped identify the most appropriate target users being early diagnosed and technically literate T2D patients.</description><identifier>ISSN: 2691-1957</identifier><identifier>EISSN: 2637-8051</identifier><identifier>DOI: 10.1145/3586579</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Applied computing ; Health informatics ; Human-centered computing ; Ubiquitous and mobile computing</subject><ispartof>ACM transactions on computing for healthcare, 2023-04, Vol.4 (2), p.1-43, Article 13</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433</citedby><cites>FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433</cites><orcidid>0009-0002-6822-6164 ; 0000-0002-8599-6868 ; 0000-0002-0095-5427 ; 0000-0002-1397-5478 ; 0000-0002-6720-1128 ; 0000-0003-0788-0031 ; 0009-0009-6326-2802 ; 0000-0002-4258-6949 ; 0000-0002-0018-6963 ; 0000-0003-1390-8758 ; 0000-0003-2734-1967 ; 0000-0001-8070-3029 ; 0000-0003-1620-8271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bardram, Jakob E.</creatorcontrib><creatorcontrib>Cramer-Petersen, Claus</creatorcontrib><creatorcontrib>Maxhuni, Alban</creatorcontrib><creatorcontrib>Christensen, Mads V. S.</creatorcontrib><creatorcontrib>Bækgaard, Per</creatorcontrib><creatorcontrib>Persson, Dan R.</creatorcontrib><creatorcontrib>Lind, Nanna</creatorcontrib><creatorcontrib>Christensen, Merete B.</creatorcontrib><creatorcontrib>Nørgaard, Kirsten</creatorcontrib><creatorcontrib>Khakurel, Jayden</creatorcontrib><creatorcontrib>Skinner, Timothy C.</creatorcontrib><creatorcontrib>Kownatka, Dagmar</creatorcontrib><creatorcontrib>Jones, Allan</creatorcontrib><title>DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes</title><title>ACM transactions on computing for healthcare</title><addtitle>ACM HEALTH</addtitle><description>Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the patient and healthcare professionals. This article presents DiaFocus, which is a mobile health sensing application for long-term ambulatory management of T2D. DiaFocus supports an adaptive collection of physiological, behavioral, and contextual data in combination with ecological assessments of psycho-social factors. This data is used for improving patient-clinician communication during consultations. DiaFocus is built using a generic data collection framework for mobile and wearable sensing and is highly extensible and customizable. We deployed DiaFocus in a 6-week feasibility study involving 12 patients with T2D. The patients found the DiaFocus approach and system useful and usable for diabetes management. Most patients would use such a system, if available as part of their treatment. Analysis of the collected data shows that mobile sensing is feasible for longitudinal ambulatory assessment of T2D, and helped identify the most appropriate target users being early diagnosed and technically literate T2D patients.</description><subject>Applied computing</subject><subject>Health informatics</subject><subject>Human-centered computing</subject><subject>Ubiquitous and mobile computing</subject><issn>2691-1957</issn><issn>2637-8051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EElWp2Jm8MQXsOD7HbFGhFCkIhjBHV-fSBiVxFQek_ntaWpju031Pd9Jj7FqKOykTfa90CtrYMzaJQZkoFVqeH7KVkbTaXLJZCJ9CiFhJlWiYsOaxwYV3X-GBZ_ydhuB7bPmSsB03vCC36X3r1zte-4FnFW7H5pt4FgKF0FE_8qbnue_XUUFDx1-xxzX97n3Ni92WeMz3D1Y0UrhiFzW2gWanOWUfi6divozyt-eXeZZHKG1sI0sWwTlpAERlVilIBRgrghSMdJoqWzlhBWCCCswKrZK1Aaq1jQXYRKkpuz3edYMPYaC63A5Nh8OulKI8SCpPkvbkzZFE1_1Df-UPIuBf3Q</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Bardram, Jakob E.</creator><creator>Cramer-Petersen, Claus</creator><creator>Maxhuni, Alban</creator><creator>Christensen, Mads V. S.</creator><creator>Bækgaard, Per</creator><creator>Persson, Dan R.</creator><creator>Lind, Nanna</creator><creator>Christensen, Merete B.</creator><creator>Nørgaard, Kirsten</creator><creator>Khakurel, Jayden</creator><creator>Skinner, Timothy C.</creator><creator>Kownatka, Dagmar</creator><creator>Jones, Allan</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-6822-6164</orcidid><orcidid>https://orcid.org/0000-0002-8599-6868</orcidid><orcidid>https://orcid.org/0000-0002-0095-5427</orcidid><orcidid>https://orcid.org/0000-0002-1397-5478</orcidid><orcidid>https://orcid.org/0000-0002-6720-1128</orcidid><orcidid>https://orcid.org/0000-0003-0788-0031</orcidid><orcidid>https://orcid.org/0009-0009-6326-2802</orcidid><orcidid>https://orcid.org/0000-0002-4258-6949</orcidid><orcidid>https://orcid.org/0000-0002-0018-6963</orcidid><orcidid>https://orcid.org/0000-0003-1390-8758</orcidid><orcidid>https://orcid.org/0000-0003-2734-1967</orcidid><orcidid>https://orcid.org/0000-0001-8070-3029</orcidid><orcidid>https://orcid.org/0000-0003-1620-8271</orcidid></search><sort><creationdate>20230418</creationdate><title>DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes</title><author>Bardram, Jakob E. ; Cramer-Petersen, Claus ; Maxhuni, Alban ; Christensen, Mads V. S. ; Bækgaard, Per ; Persson, Dan R. ; Lind, Nanna ; Christensen, Merete B. ; Nørgaard, Kirsten ; Khakurel, Jayden ; Skinner, Timothy C. ; Kownatka, Dagmar ; Jones, Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied computing</topic><topic>Health informatics</topic><topic>Human-centered computing</topic><topic>Ubiquitous and mobile computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardram, Jakob E.</creatorcontrib><creatorcontrib>Cramer-Petersen, Claus</creatorcontrib><creatorcontrib>Maxhuni, Alban</creatorcontrib><creatorcontrib>Christensen, Mads V. S.</creatorcontrib><creatorcontrib>Bækgaard, Per</creatorcontrib><creatorcontrib>Persson, Dan R.</creatorcontrib><creatorcontrib>Lind, Nanna</creatorcontrib><creatorcontrib>Christensen, Merete B.</creatorcontrib><creatorcontrib>Nørgaard, Kirsten</creatorcontrib><creatorcontrib>Khakurel, Jayden</creatorcontrib><creatorcontrib>Skinner, Timothy C.</creatorcontrib><creatorcontrib>Kownatka, Dagmar</creatorcontrib><creatorcontrib>Jones, Allan</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computing for healthcare</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardram, Jakob E.</au><au>Cramer-Petersen, Claus</au><au>Maxhuni, Alban</au><au>Christensen, Mads V. S.</au><au>Bækgaard, Per</au><au>Persson, Dan R.</au><au>Lind, Nanna</au><au>Christensen, Merete B.</au><au>Nørgaard, Kirsten</au><au>Khakurel, Jayden</au><au>Skinner, Timothy C.</au><au>Kownatka, Dagmar</au><au>Jones, Allan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes</atitle><jtitle>ACM transactions on computing for healthcare</jtitle><stitle>ACM HEALTH</stitle><date>2023-04-18</date><risdate>2023</risdate><volume>4</volume><issue>2</issue><spage>1</spage><epage>43</epage><pages>1-43</pages><artnum>13</artnum><issn>2691-1957</issn><eissn>2637-8051</eissn><abstract>Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the patient and healthcare professionals. This article presents DiaFocus, which is a mobile health sensing application for long-term ambulatory management of T2D. DiaFocus supports an adaptive collection of physiological, behavioral, and contextual data in combination with ecological assessments of psycho-social factors. This data is used for improving patient-clinician communication during consultations. DiaFocus is built using a generic data collection framework for mobile and wearable sensing and is highly extensible and customizable. We deployed DiaFocus in a 6-week feasibility study involving 12 patients with T2D. The patients found the DiaFocus approach and system useful and usable for diabetes management. Most patients would use such a system, if available as part of their treatment. Analysis of the collected data shows that mobile sensing is feasible for longitudinal ambulatory assessment of T2D, and helped identify the most appropriate target users being early diagnosed and technically literate T2D patients.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3586579</doi><tpages>43</tpages><orcidid>https://orcid.org/0009-0002-6822-6164</orcidid><orcidid>https://orcid.org/0000-0002-8599-6868</orcidid><orcidid>https://orcid.org/0000-0002-0095-5427</orcidid><orcidid>https://orcid.org/0000-0002-1397-5478</orcidid><orcidid>https://orcid.org/0000-0002-6720-1128</orcidid><orcidid>https://orcid.org/0000-0003-0788-0031</orcidid><orcidid>https://orcid.org/0009-0009-6326-2802</orcidid><orcidid>https://orcid.org/0000-0002-4258-6949</orcidid><orcidid>https://orcid.org/0000-0002-0018-6963</orcidid><orcidid>https://orcid.org/0000-0003-1390-8758</orcidid><orcidid>https://orcid.org/0000-0003-2734-1967</orcidid><orcidid>https://orcid.org/0000-0001-8070-3029</orcidid><orcidid>https://orcid.org/0000-0003-1620-8271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2691-1957 |
ispartof | ACM transactions on computing for healthcare, 2023-04, Vol.4 (2), p.1-43, Article 13 |
issn | 2691-1957 2637-8051 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3586579 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Applied computing Health informatics Human-centered computing Ubiquitous and mobile computing |
title | DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DiaFocus:%20A%20Personal%20Health%20Technology%20for%20Adaptive%20Assessment%20in%20Long-Term%20Management%20of%20Type%202%20Diabetes&rft.jtitle=ACM%20transactions%20on%20computing%20for%20healthcare&rft.au=Bardram,%20Jakob%20E.&rft.date=2023-04-18&rft.volume=4&rft.issue=2&rft.spage=1&rft.epage=43&rft.pages=1-43&rft.artnum=13&rft.issn=2691-1957&rft.eissn=2637-8051&rft_id=info:doi/10.1145/3586579&rft_dat=%3Cacm_cross%3E3586579%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |