Loading…

DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes

Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the p...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on computing for healthcare 2023-04, Vol.4 (2), p.1-43, Article 13
Main Authors: Bardram, Jakob E., Cramer-Petersen, Claus, Maxhuni, Alban, Christensen, Mads V. S., Bækgaard, Per, Persson, Dan R., Lind, Nanna, Christensen, Merete B., Nørgaard, Kirsten, Khakurel, Jayden, Skinner, Timothy C., Kownatka, Dagmar, Jones, Allan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433
cites cdi_FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433
container_end_page 43
container_issue 2
container_start_page 1
container_title ACM transactions on computing for healthcare
container_volume 4
creator Bardram, Jakob E.
Cramer-Petersen, Claus
Maxhuni, Alban
Christensen, Mads V. S.
Bækgaard, Per
Persson, Dan R.
Lind, Nanna
Christensen, Merete B.
Nørgaard, Kirsten
Khakurel, Jayden
Skinner, Timothy C.
Kownatka, Dagmar
Jones, Allan
description Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the patient and healthcare professionals. This article presents DiaFocus, which is a mobile health sensing application for long-term ambulatory management of T2D. DiaFocus supports an adaptive collection of physiological, behavioral, and contextual data in combination with ecological assessments of psycho-social factors. This data is used for improving patient-clinician communication during consultations. DiaFocus is built using a generic data collection framework for mobile and wearable sensing and is highly extensible and customizable. We deployed DiaFocus in a 6-week feasibility study involving 12 patients with T2D. The patients found the DiaFocus approach and system useful and usable for diabetes management. Most patients would use such a system, if available as part of their treatment. Analysis of the collected data shows that mobile sensing is feasible for longitudinal ambulatory assessment of T2D, and helped identify the most appropriate target users being early diagnosed and technically literate T2D patients.
doi_str_mv 10.1145/3586579
format article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3586579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3586579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EElWp2Jm8MQXsOD7HbFGhFCkIhjBHV-fSBiVxFQek_ntaWpju031Pd9Jj7FqKOykTfa90CtrYMzaJQZkoFVqeH7KVkbTaXLJZCJ9CiFhJlWiYsOaxwYV3X-GBZ_ydhuB7bPmSsB03vCC36X3r1zte-4FnFW7H5pt4FgKF0FE_8qbnue_XUUFDx1-xxzX97n3Ni92WeMz3D1Y0UrhiFzW2gWanOWUfi6divozyt-eXeZZHKG1sI0sWwTlpAERlVilIBRgrghSMdJoqWzlhBWCCCswKrZK1Aaq1jQXYRKkpuz3edYMPYaC63A5Nh8OulKI8SCpPkvbkzZFE1_1Df-UPIuBf3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Bardram, Jakob E. ; Cramer-Petersen, Claus ; Maxhuni, Alban ; Christensen, Mads V. S. ; Bækgaard, Per ; Persson, Dan R. ; Lind, Nanna ; Christensen, Merete B. ; Nørgaard, Kirsten ; Khakurel, Jayden ; Skinner, Timothy C. ; Kownatka, Dagmar ; Jones, Allan</creator><creatorcontrib>Bardram, Jakob E. ; Cramer-Petersen, Claus ; Maxhuni, Alban ; Christensen, Mads V. S. ; Bækgaard, Per ; Persson, Dan R. ; Lind, Nanna ; Christensen, Merete B. ; Nørgaard, Kirsten ; Khakurel, Jayden ; Skinner, Timothy C. ; Kownatka, Dagmar ; Jones, Allan</creatorcontrib><description>Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the patient and healthcare professionals. This article presents DiaFocus, which is a mobile health sensing application for long-term ambulatory management of T2D. DiaFocus supports an adaptive collection of physiological, behavioral, and contextual data in combination with ecological assessments of psycho-social factors. This data is used for improving patient-clinician communication during consultations. DiaFocus is built using a generic data collection framework for mobile and wearable sensing and is highly extensible and customizable. We deployed DiaFocus in a 6-week feasibility study involving 12 patients with T2D. The patients found the DiaFocus approach and system useful and usable for diabetes management. Most patients would use such a system, if available as part of their treatment. Analysis of the collected data shows that mobile sensing is feasible for longitudinal ambulatory assessment of T2D, and helped identify the most appropriate target users being early diagnosed and technically literate T2D patients.</description><identifier>ISSN: 2691-1957</identifier><identifier>EISSN: 2637-8051</identifier><identifier>DOI: 10.1145/3586579</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Applied computing ; Health informatics ; Human-centered computing ; Ubiquitous and mobile computing</subject><ispartof>ACM transactions on computing for healthcare, 2023-04, Vol.4 (2), p.1-43, Article 13</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433</citedby><cites>FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433</cites><orcidid>0009-0002-6822-6164 ; 0000-0002-8599-6868 ; 0000-0002-0095-5427 ; 0000-0002-1397-5478 ; 0000-0002-6720-1128 ; 0000-0003-0788-0031 ; 0009-0009-6326-2802 ; 0000-0002-4258-6949 ; 0000-0002-0018-6963 ; 0000-0003-1390-8758 ; 0000-0003-2734-1967 ; 0000-0001-8070-3029 ; 0000-0003-1620-8271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bardram, Jakob E.</creatorcontrib><creatorcontrib>Cramer-Petersen, Claus</creatorcontrib><creatorcontrib>Maxhuni, Alban</creatorcontrib><creatorcontrib>Christensen, Mads V. S.</creatorcontrib><creatorcontrib>Bækgaard, Per</creatorcontrib><creatorcontrib>Persson, Dan R.</creatorcontrib><creatorcontrib>Lind, Nanna</creatorcontrib><creatorcontrib>Christensen, Merete B.</creatorcontrib><creatorcontrib>Nørgaard, Kirsten</creatorcontrib><creatorcontrib>Khakurel, Jayden</creatorcontrib><creatorcontrib>Skinner, Timothy C.</creatorcontrib><creatorcontrib>Kownatka, Dagmar</creatorcontrib><creatorcontrib>Jones, Allan</creatorcontrib><title>DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes</title><title>ACM transactions on computing for healthcare</title><addtitle>ACM HEALTH</addtitle><description>Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the patient and healthcare professionals. This article presents DiaFocus, which is a mobile health sensing application for long-term ambulatory management of T2D. DiaFocus supports an adaptive collection of physiological, behavioral, and contextual data in combination with ecological assessments of psycho-social factors. This data is used for improving patient-clinician communication during consultations. DiaFocus is built using a generic data collection framework for mobile and wearable sensing and is highly extensible and customizable. We deployed DiaFocus in a 6-week feasibility study involving 12 patients with T2D. The patients found the DiaFocus approach and system useful and usable for diabetes management. Most patients would use such a system, if available as part of their treatment. Analysis of the collected data shows that mobile sensing is feasible for longitudinal ambulatory assessment of T2D, and helped identify the most appropriate target users being early diagnosed and technically literate T2D patients.</description><subject>Applied computing</subject><subject>Health informatics</subject><subject>Human-centered computing</subject><subject>Ubiquitous and mobile computing</subject><issn>2691-1957</issn><issn>2637-8051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EElWp2Jm8MQXsOD7HbFGhFCkIhjBHV-fSBiVxFQek_ntaWpju031Pd9Jj7FqKOykTfa90CtrYMzaJQZkoFVqeH7KVkbTaXLJZCJ9CiFhJlWiYsOaxwYV3X-GBZ_ydhuB7bPmSsB03vCC36X3r1zte-4FnFW7H5pt4FgKF0FE_8qbnue_XUUFDx1-xxzX97n3Ni92WeMz3D1Y0UrhiFzW2gWanOWUfi6divozyt-eXeZZHKG1sI0sWwTlpAERlVilIBRgrghSMdJoqWzlhBWCCCswKrZK1Aaq1jQXYRKkpuz3edYMPYaC63A5Nh8OulKI8SCpPkvbkzZFE1_1Df-UPIuBf3Q</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Bardram, Jakob E.</creator><creator>Cramer-Petersen, Claus</creator><creator>Maxhuni, Alban</creator><creator>Christensen, Mads V. S.</creator><creator>Bækgaard, Per</creator><creator>Persson, Dan R.</creator><creator>Lind, Nanna</creator><creator>Christensen, Merete B.</creator><creator>Nørgaard, Kirsten</creator><creator>Khakurel, Jayden</creator><creator>Skinner, Timothy C.</creator><creator>Kownatka, Dagmar</creator><creator>Jones, Allan</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-6822-6164</orcidid><orcidid>https://orcid.org/0000-0002-8599-6868</orcidid><orcidid>https://orcid.org/0000-0002-0095-5427</orcidid><orcidid>https://orcid.org/0000-0002-1397-5478</orcidid><orcidid>https://orcid.org/0000-0002-6720-1128</orcidid><orcidid>https://orcid.org/0000-0003-0788-0031</orcidid><orcidid>https://orcid.org/0009-0009-6326-2802</orcidid><orcidid>https://orcid.org/0000-0002-4258-6949</orcidid><orcidid>https://orcid.org/0000-0002-0018-6963</orcidid><orcidid>https://orcid.org/0000-0003-1390-8758</orcidid><orcidid>https://orcid.org/0000-0003-2734-1967</orcidid><orcidid>https://orcid.org/0000-0001-8070-3029</orcidid><orcidid>https://orcid.org/0000-0003-1620-8271</orcidid></search><sort><creationdate>20230418</creationdate><title>DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes</title><author>Bardram, Jakob E. ; Cramer-Petersen, Claus ; Maxhuni, Alban ; Christensen, Mads V. S. ; Bækgaard, Per ; Persson, Dan R. ; Lind, Nanna ; Christensen, Merete B. ; Nørgaard, Kirsten ; Khakurel, Jayden ; Skinner, Timothy C. ; Kownatka, Dagmar ; Jones, Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied computing</topic><topic>Health informatics</topic><topic>Human-centered computing</topic><topic>Ubiquitous and mobile computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardram, Jakob E.</creatorcontrib><creatorcontrib>Cramer-Petersen, Claus</creatorcontrib><creatorcontrib>Maxhuni, Alban</creatorcontrib><creatorcontrib>Christensen, Mads V. S.</creatorcontrib><creatorcontrib>Bækgaard, Per</creatorcontrib><creatorcontrib>Persson, Dan R.</creatorcontrib><creatorcontrib>Lind, Nanna</creatorcontrib><creatorcontrib>Christensen, Merete B.</creatorcontrib><creatorcontrib>Nørgaard, Kirsten</creatorcontrib><creatorcontrib>Khakurel, Jayden</creatorcontrib><creatorcontrib>Skinner, Timothy C.</creatorcontrib><creatorcontrib>Kownatka, Dagmar</creatorcontrib><creatorcontrib>Jones, Allan</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computing for healthcare</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardram, Jakob E.</au><au>Cramer-Petersen, Claus</au><au>Maxhuni, Alban</au><au>Christensen, Mads V. S.</au><au>Bækgaard, Per</au><au>Persson, Dan R.</au><au>Lind, Nanna</au><au>Christensen, Merete B.</au><au>Nørgaard, Kirsten</au><au>Khakurel, Jayden</au><au>Skinner, Timothy C.</au><au>Kownatka, Dagmar</au><au>Jones, Allan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes</atitle><jtitle>ACM transactions on computing for healthcare</jtitle><stitle>ACM HEALTH</stitle><date>2023-04-18</date><risdate>2023</risdate><volume>4</volume><issue>2</issue><spage>1</spage><epage>43</epage><pages>1-43</pages><artnum>13</artnum><issn>2691-1957</issn><eissn>2637-8051</eissn><abstract>Type 2 diabetes (T2D) is a large disease burden worldwide and represents an increasing and complex challenge for all societies. For the individual, T2D is a complex, multi-dimensional, and long-term challenge to manage, and it is challenging to establish and maintain good communication between the patient and healthcare professionals. This article presents DiaFocus, which is a mobile health sensing application for long-term ambulatory management of T2D. DiaFocus supports an adaptive collection of physiological, behavioral, and contextual data in combination with ecological assessments of psycho-social factors. This data is used for improving patient-clinician communication during consultations. DiaFocus is built using a generic data collection framework for mobile and wearable sensing and is highly extensible and customizable. We deployed DiaFocus in a 6-week feasibility study involving 12 patients with T2D. The patients found the DiaFocus approach and system useful and usable for diabetes management. Most patients would use such a system, if available as part of their treatment. Analysis of the collected data shows that mobile sensing is feasible for longitudinal ambulatory assessment of T2D, and helped identify the most appropriate target users being early diagnosed and technically literate T2D patients.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3586579</doi><tpages>43</tpages><orcidid>https://orcid.org/0009-0002-6822-6164</orcidid><orcidid>https://orcid.org/0000-0002-8599-6868</orcidid><orcidid>https://orcid.org/0000-0002-0095-5427</orcidid><orcidid>https://orcid.org/0000-0002-1397-5478</orcidid><orcidid>https://orcid.org/0000-0002-6720-1128</orcidid><orcidid>https://orcid.org/0000-0003-0788-0031</orcidid><orcidid>https://orcid.org/0009-0009-6326-2802</orcidid><orcidid>https://orcid.org/0000-0002-4258-6949</orcidid><orcidid>https://orcid.org/0000-0002-0018-6963</orcidid><orcidid>https://orcid.org/0000-0003-1390-8758</orcidid><orcidid>https://orcid.org/0000-0003-2734-1967</orcidid><orcidid>https://orcid.org/0000-0001-8070-3029</orcidid><orcidid>https://orcid.org/0000-0003-1620-8271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2691-1957
ispartof ACM transactions on computing for healthcare, 2023-04, Vol.4 (2), p.1-43, Article 13
issn 2691-1957
2637-8051
language eng
recordid cdi_crossref_primary_10_1145_3586579
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Applied computing
Health informatics
Human-centered computing
Ubiquitous and mobile computing
title DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management of Type 2 Diabetes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DiaFocus:%20A%20Personal%20Health%20Technology%20for%20Adaptive%20Assessment%20in%20Long-Term%20Management%20of%20Type%202%20Diabetes&rft.jtitle=ACM%20transactions%20on%20computing%20for%20healthcare&rft.au=Bardram,%20Jakob%20E.&rft.date=2023-04-18&rft.volume=4&rft.issue=2&rft.spage=1&rft.epage=43&rft.pages=1-43&rft.artnum=13&rft.issn=2691-1957&rft.eissn=2637-8051&rft_id=info:doi/10.1145/3586579&rft_dat=%3Cacm_cross%3E3586579%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a1929-9e9a6cc17660d7b86136a23e68671c5ed9dc0906a4a367ba931f76ef592069433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true