Loading…

Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild

Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting lear...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on computer-human interaction 2023-11, Vol.31 (1), p.1-41, Article 8
Main Authors: Martinez-Maldonado, Roberto, Echeverria, Vanessa, Fernandez-Nieto, Gloria, Yan, Lixiang, Zhao, Linxuan, Alfredo, Riordan, Li, Xinyu, Dix, Samantha, Jaggard, Hollie, Wotherspoon, Rosie, Osborne, Abra, Shum, Simon Buckingham, Gašević, Dragan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713
cites cdi_FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713
container_end_page 41
container_issue 1
container_start_page 1
container_title ACM transactions on computer-human interaction
container_volume 31
creator Martinez-Maldonado, Roberto
Echeverria, Vanessa
Fernandez-Nieto, Gloria
Yan, Lixiang
Zhao, Linxuan
Alfredo, Riordan
Li, Xinyu
Dix, Samantha
Jaggard, Hollie
Wotherspoon, Rosie
Osborne, Abra
Shum, Simon Buckingham
Gašević, Dragan
description Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations “in-the-wild”. These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers’ tasks. These practicalities have been rarely investigated. This article addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators in the context of nursing education. The lessons learnt were synthesised into topics related to (i) technological/physical aspects of the deployment; (ii) multimodal data and interfaces; (iii) the design process; (iv) participation, ethics and privacy; and (v) sustainability of the deployment.
doi_str_mv 10.1145/3622784
format article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3622784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3622784</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqUgdiZvTAY_f8TpWBUKRUEsIMbIjl8gyEkqOwz59wSlMN0r3aM7HEIugd8AKH0rMyFMro7IArQ2zEihj6fOjWRcQ3ZKzlL64pyDydSCPBWYUt8lWqCN3UDr2LfU0ufvMDRt722Yh6b7oOvOhnFoqkTvcB_6scWJ33Vs-ET23gR_Tk5qGxJeHHJJ3rb3r5tHVrw87DbrgllhzMAyn1tUHgVaDzlglhupq5VEz8XKOeO5lN4ozKUE7xQCSnDCutpxUTsDckmu598q9ilFrMt9bFobxxJ4-augPCiYyKuZtFX7D_2NP8_VVlE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Alfredo, Riordan ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Shum, Simon Buckingham ; Gašević, Dragan</creator><creatorcontrib>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Alfredo, Riordan ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Shum, Simon Buckingham ; Gašević, Dragan</creatorcontrib><description>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations “in-the-wild”. These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers’ tasks. These practicalities have been rarely investigated. This article addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators in the context of nursing education. The lessons learnt were synthesised into topics related to (i) technological/physical aspects of the deployment; (ii) multimodal data and interfaces; (iii) the design process; (iv) participation, ethics and privacy; and (v) sustainability of the deployment.</description><identifier>ISSN: 1073-0516</identifier><identifier>EISSN: 1557-7325</identifier><identifier>DOI: 10.1145/3622784</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Collaborative and social computing systems and tools ; Empirical studies in ubiquitous and mobile computing ; Human-centered computing</subject><ispartof>ACM transactions on computer-human interaction, 2023-11, Vol.31 (1), p.1-41, Article 8</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713</citedby><cites>FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713</cites><orcidid>0000-0002-0903-2776 ; 0000-0002-6334-7429 ; 0000-0002-8375-1816 ; 0000-0002-6741-3024 ; 0000-0001-5564-0185 ; 0000-0002-2022-9588 ; 0000-0002-8163-2303 ; 0000-0003-3818-045X ; 0000-0003-4414-7445 ; 0000-0003-2681-4451 ; 0000-0001-9265-1908 ; 0000-0001-5440-6143 ; 0000-0001-8887-3188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martinez-Maldonado, Roberto</creatorcontrib><creatorcontrib>Echeverria, Vanessa</creatorcontrib><creatorcontrib>Fernandez-Nieto, Gloria</creatorcontrib><creatorcontrib>Yan, Lixiang</creatorcontrib><creatorcontrib>Zhao, Linxuan</creatorcontrib><creatorcontrib>Alfredo, Riordan</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Dix, Samantha</creatorcontrib><creatorcontrib>Jaggard, Hollie</creatorcontrib><creatorcontrib>Wotherspoon, Rosie</creatorcontrib><creatorcontrib>Osborne, Abra</creatorcontrib><creatorcontrib>Shum, Simon Buckingham</creatorcontrib><creatorcontrib>Gašević, Dragan</creatorcontrib><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild</title><title>ACM transactions on computer-human interaction</title><addtitle>ACM TOCHI</addtitle><description>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations “in-the-wild”. These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers’ tasks. These practicalities have been rarely investigated. This article addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators in the context of nursing education. The lessons learnt were synthesised into topics related to (i) technological/physical aspects of the deployment; (ii) multimodal data and interfaces; (iii) the design process; (iv) participation, ethics and privacy; and (v) sustainability of the deployment.</description><subject>Collaborative and social computing systems and tools</subject><subject>Empirical studies in ubiquitous and mobile computing</subject><subject>Human-centered computing</subject><issn>1073-0516</issn><issn>1557-7325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EEqUgdiZvTAY_f8TpWBUKRUEsIMbIjl8gyEkqOwz59wSlMN0r3aM7HEIugd8AKH0rMyFMro7IArQ2zEihj6fOjWRcQ3ZKzlL64pyDydSCPBWYUt8lWqCN3UDr2LfU0ufvMDRt722Yh6b7oOvOhnFoqkTvcB_6scWJ33Vs-ET23gR_Tk5qGxJeHHJJ3rb3r5tHVrw87DbrgllhzMAyn1tUHgVaDzlglhupq5VEz8XKOeO5lN4ozKUE7xQCSnDCutpxUTsDckmu598q9ilFrMt9bFobxxJ4-augPCiYyKuZtFX7D_2NP8_VVlE</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Martinez-Maldonado, Roberto</creator><creator>Echeverria, Vanessa</creator><creator>Fernandez-Nieto, Gloria</creator><creator>Yan, Lixiang</creator><creator>Zhao, Linxuan</creator><creator>Alfredo, Riordan</creator><creator>Li, Xinyu</creator><creator>Dix, Samantha</creator><creator>Jaggard, Hollie</creator><creator>Wotherspoon, Rosie</creator><creator>Osborne, Abra</creator><creator>Shum, Simon Buckingham</creator><creator>Gašević, Dragan</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0903-2776</orcidid><orcidid>https://orcid.org/0000-0002-6334-7429</orcidid><orcidid>https://orcid.org/0000-0002-8375-1816</orcidid><orcidid>https://orcid.org/0000-0002-6741-3024</orcidid><orcidid>https://orcid.org/0000-0001-5564-0185</orcidid><orcidid>https://orcid.org/0000-0002-2022-9588</orcidid><orcidid>https://orcid.org/0000-0002-8163-2303</orcidid><orcidid>https://orcid.org/0000-0003-3818-045X</orcidid><orcidid>https://orcid.org/0000-0003-4414-7445</orcidid><orcidid>https://orcid.org/0000-0003-2681-4451</orcidid><orcidid>https://orcid.org/0000-0001-9265-1908</orcidid><orcidid>https://orcid.org/0000-0001-5440-6143</orcidid><orcidid>https://orcid.org/0000-0001-8887-3188</orcidid></search><sort><creationdate>20231129</creationdate><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild</title><author>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Alfredo, Riordan ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Shum, Simon Buckingham ; Gašević, Dragan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collaborative and social computing systems and tools</topic><topic>Empirical studies in ubiquitous and mobile computing</topic><topic>Human-centered computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Maldonado, Roberto</creatorcontrib><creatorcontrib>Echeverria, Vanessa</creatorcontrib><creatorcontrib>Fernandez-Nieto, Gloria</creatorcontrib><creatorcontrib>Yan, Lixiang</creatorcontrib><creatorcontrib>Zhao, Linxuan</creatorcontrib><creatorcontrib>Alfredo, Riordan</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Dix, Samantha</creatorcontrib><creatorcontrib>Jaggard, Hollie</creatorcontrib><creatorcontrib>Wotherspoon, Rosie</creatorcontrib><creatorcontrib>Osborne, Abra</creatorcontrib><creatorcontrib>Shum, Simon Buckingham</creatorcontrib><creatorcontrib>Gašević, Dragan</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computer-human interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Maldonado, Roberto</au><au>Echeverria, Vanessa</au><au>Fernandez-Nieto, Gloria</au><au>Yan, Lixiang</au><au>Zhao, Linxuan</au><au>Alfredo, Riordan</au><au>Li, Xinyu</au><au>Dix, Samantha</au><au>Jaggard, Hollie</au><au>Wotherspoon, Rosie</au><au>Osborne, Abra</au><au>Shum, Simon Buckingham</au><au>Gašević, Dragan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild</atitle><jtitle>ACM transactions on computer-human interaction</jtitle><stitle>ACM TOCHI</stitle><date>2023-11-29</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><spage>1</spage><epage>41</epage><pages>1-41</pages><artnum>8</artnum><issn>1073-0516</issn><eissn>1557-7325</eissn><abstract>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations “in-the-wild”. These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers’ tasks. These practicalities have been rarely investigated. This article addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators in the context of nursing education. The lessons learnt were synthesised into topics related to (i) technological/physical aspects of the deployment; (ii) multimodal data and interfaces; (iii) the design process; (iv) participation, ethics and privacy; and (v) sustainability of the deployment.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3622784</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-0903-2776</orcidid><orcidid>https://orcid.org/0000-0002-6334-7429</orcidid><orcidid>https://orcid.org/0000-0002-8375-1816</orcidid><orcidid>https://orcid.org/0000-0002-6741-3024</orcidid><orcidid>https://orcid.org/0000-0001-5564-0185</orcidid><orcidid>https://orcid.org/0000-0002-2022-9588</orcidid><orcidid>https://orcid.org/0000-0002-8163-2303</orcidid><orcidid>https://orcid.org/0000-0003-3818-045X</orcidid><orcidid>https://orcid.org/0000-0003-4414-7445</orcidid><orcidid>https://orcid.org/0000-0003-2681-4451</orcidid><orcidid>https://orcid.org/0000-0001-9265-1908</orcidid><orcidid>https://orcid.org/0000-0001-5440-6143</orcidid><orcidid>https://orcid.org/0000-0001-8887-3188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-0516
ispartof ACM transactions on computer-human interaction, 2023-11, Vol.31 (1), p.1-41, Article 8
issn 1073-0516
1557-7325
language eng
recordid cdi_crossref_primary_10_1145_3622784
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Collaborative and social computing systems and tools
Empirical studies in ubiquitous and mobile computing
Human-centered computing
title Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lessons%20Learnt%20from%20a%20Multimodal%20Learning%20Analytics%20Deployment%20In-the-Wild&rft.jtitle=ACM%20transactions%20on%20computer-human%20interaction&rft.au=Martinez-Maldonado,%20Roberto&rft.date=2023-11-29&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=41&rft.pages=1-41&rft.artnum=8&rft.issn=1073-0516&rft.eissn=1557-7325&rft_id=info:doi/10.1145/3622784&rft_dat=%3Cacm_cross%3E3622784%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true