Loading…
Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild
Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting lear...
Saved in:
Published in: | ACM transactions on computer-human interaction 2023-11, Vol.31 (1), p.1-41, Article 8 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713 |
---|---|
cites | cdi_FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713 |
container_end_page | 41 |
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on computer-human interaction |
container_volume | 31 |
creator | Martinez-Maldonado, Roberto Echeverria, Vanessa Fernandez-Nieto, Gloria Yan, Lixiang Zhao, Linxuan Alfredo, Riordan Li, Xinyu Dix, Samantha Jaggard, Hollie Wotherspoon, Rosie Osborne, Abra Shum, Simon Buckingham Gašević, Dragan |
description | Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations “in-the-wild”. These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers’ tasks. These practicalities have been rarely investigated. This article addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators in the context of nursing education. The lessons learnt were synthesised into topics related to (i) technological/physical aspects of the deployment; (ii) multimodal data and interfaces; (iii) the design process; (iv) participation, ethics and privacy; and (v) sustainability of the deployment. |
doi_str_mv | 10.1145/3622784 |
format | article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3622784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3622784</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqUgdiZvTAY_f8TpWBUKRUEsIMbIjl8gyEkqOwz59wSlMN0r3aM7HEIugd8AKH0rMyFMro7IArQ2zEihj6fOjWRcQ3ZKzlL64pyDydSCPBWYUt8lWqCN3UDr2LfU0ufvMDRt722Yh6b7oOvOhnFoqkTvcB_6scWJ33Vs-ET23gR_Tk5qGxJeHHJJ3rb3r5tHVrw87DbrgllhzMAyn1tUHgVaDzlglhupq5VEz8XKOeO5lN4ozKUE7xQCSnDCutpxUTsDckmu598q9ilFrMt9bFobxxJ4-augPCiYyKuZtFX7D_2NP8_VVlE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Alfredo, Riordan ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Shum, Simon Buckingham ; Gašević, Dragan</creator><creatorcontrib>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Alfredo, Riordan ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Shum, Simon Buckingham ; Gašević, Dragan</creatorcontrib><description>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations “in-the-wild”. These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers’ tasks. These practicalities have been rarely investigated. This article addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators in the context of nursing education. The lessons learnt were synthesised into topics related to (i) technological/physical aspects of the deployment; (ii) multimodal data and interfaces; (iii) the design process; (iv) participation, ethics and privacy; and (v) sustainability of the deployment.</description><identifier>ISSN: 1073-0516</identifier><identifier>EISSN: 1557-7325</identifier><identifier>DOI: 10.1145/3622784</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Collaborative and social computing systems and tools ; Empirical studies in ubiquitous and mobile computing ; Human-centered computing</subject><ispartof>ACM transactions on computer-human interaction, 2023-11, Vol.31 (1), p.1-41, Article 8</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713</citedby><cites>FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713</cites><orcidid>0000-0002-0903-2776 ; 0000-0002-6334-7429 ; 0000-0002-8375-1816 ; 0000-0002-6741-3024 ; 0000-0001-5564-0185 ; 0000-0002-2022-9588 ; 0000-0002-8163-2303 ; 0000-0003-3818-045X ; 0000-0003-4414-7445 ; 0000-0003-2681-4451 ; 0000-0001-9265-1908 ; 0000-0001-5440-6143 ; 0000-0001-8887-3188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martinez-Maldonado, Roberto</creatorcontrib><creatorcontrib>Echeverria, Vanessa</creatorcontrib><creatorcontrib>Fernandez-Nieto, Gloria</creatorcontrib><creatorcontrib>Yan, Lixiang</creatorcontrib><creatorcontrib>Zhao, Linxuan</creatorcontrib><creatorcontrib>Alfredo, Riordan</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Dix, Samantha</creatorcontrib><creatorcontrib>Jaggard, Hollie</creatorcontrib><creatorcontrib>Wotherspoon, Rosie</creatorcontrib><creatorcontrib>Osborne, Abra</creatorcontrib><creatorcontrib>Shum, Simon Buckingham</creatorcontrib><creatorcontrib>Gašević, Dragan</creatorcontrib><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild</title><title>ACM transactions on computer-human interaction</title><addtitle>ACM TOCHI</addtitle><description>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations “in-the-wild”. These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers’ tasks. These practicalities have been rarely investigated. This article addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators in the context of nursing education. The lessons learnt were synthesised into topics related to (i) technological/physical aspects of the deployment; (ii) multimodal data and interfaces; (iii) the design process; (iv) participation, ethics and privacy; and (v) sustainability of the deployment.</description><subject>Collaborative and social computing systems and tools</subject><subject>Empirical studies in ubiquitous and mobile computing</subject><subject>Human-centered computing</subject><issn>1073-0516</issn><issn>1557-7325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EEqUgdiZvTAY_f8TpWBUKRUEsIMbIjl8gyEkqOwz59wSlMN0r3aM7HEIugd8AKH0rMyFMro7IArQ2zEihj6fOjWRcQ3ZKzlL64pyDydSCPBWYUt8lWqCN3UDr2LfU0ufvMDRt722Yh6b7oOvOhnFoqkTvcB_6scWJ33Vs-ET23gR_Tk5qGxJeHHJJ3rb3r5tHVrw87DbrgllhzMAyn1tUHgVaDzlglhupq5VEz8XKOeO5lN4ozKUE7xQCSnDCutpxUTsDckmu598q9ilFrMt9bFobxxJ4-augPCiYyKuZtFX7D_2NP8_VVlE</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Martinez-Maldonado, Roberto</creator><creator>Echeverria, Vanessa</creator><creator>Fernandez-Nieto, Gloria</creator><creator>Yan, Lixiang</creator><creator>Zhao, Linxuan</creator><creator>Alfredo, Riordan</creator><creator>Li, Xinyu</creator><creator>Dix, Samantha</creator><creator>Jaggard, Hollie</creator><creator>Wotherspoon, Rosie</creator><creator>Osborne, Abra</creator><creator>Shum, Simon Buckingham</creator><creator>Gašević, Dragan</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0903-2776</orcidid><orcidid>https://orcid.org/0000-0002-6334-7429</orcidid><orcidid>https://orcid.org/0000-0002-8375-1816</orcidid><orcidid>https://orcid.org/0000-0002-6741-3024</orcidid><orcidid>https://orcid.org/0000-0001-5564-0185</orcidid><orcidid>https://orcid.org/0000-0002-2022-9588</orcidid><orcidid>https://orcid.org/0000-0002-8163-2303</orcidid><orcidid>https://orcid.org/0000-0003-3818-045X</orcidid><orcidid>https://orcid.org/0000-0003-4414-7445</orcidid><orcidid>https://orcid.org/0000-0003-2681-4451</orcidid><orcidid>https://orcid.org/0000-0001-9265-1908</orcidid><orcidid>https://orcid.org/0000-0001-5440-6143</orcidid><orcidid>https://orcid.org/0000-0001-8887-3188</orcidid></search><sort><creationdate>20231129</creationdate><title>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild</title><author>Martinez-Maldonado, Roberto ; Echeverria, Vanessa ; Fernandez-Nieto, Gloria ; Yan, Lixiang ; Zhao, Linxuan ; Alfredo, Riordan ; Li, Xinyu ; Dix, Samantha ; Jaggard, Hollie ; Wotherspoon, Rosie ; Osborne, Abra ; Shum, Simon Buckingham ; Gašević, Dragan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collaborative and social computing systems and tools</topic><topic>Empirical studies in ubiquitous and mobile computing</topic><topic>Human-centered computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Maldonado, Roberto</creatorcontrib><creatorcontrib>Echeverria, Vanessa</creatorcontrib><creatorcontrib>Fernandez-Nieto, Gloria</creatorcontrib><creatorcontrib>Yan, Lixiang</creatorcontrib><creatorcontrib>Zhao, Linxuan</creatorcontrib><creatorcontrib>Alfredo, Riordan</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Dix, Samantha</creatorcontrib><creatorcontrib>Jaggard, Hollie</creatorcontrib><creatorcontrib>Wotherspoon, Rosie</creatorcontrib><creatorcontrib>Osborne, Abra</creatorcontrib><creatorcontrib>Shum, Simon Buckingham</creatorcontrib><creatorcontrib>Gašević, Dragan</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computer-human interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Maldonado, Roberto</au><au>Echeverria, Vanessa</au><au>Fernandez-Nieto, Gloria</au><au>Yan, Lixiang</au><au>Zhao, Linxuan</au><au>Alfredo, Riordan</au><au>Li, Xinyu</au><au>Dix, Samantha</au><au>Jaggard, Hollie</au><au>Wotherspoon, Rosie</au><au>Osborne, Abra</au><au>Shum, Simon Buckingham</au><au>Gašević, Dragan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild</atitle><jtitle>ACM transactions on computer-human interaction</jtitle><stitle>ACM TOCHI</stitle><date>2023-11-29</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><spage>1</spage><epage>41</epage><pages>1-41</pages><artnum>8</artnum><issn>1073-0516</issn><eissn>1557-7325</eissn><abstract>Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations “in-the-wild”. These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers’ tasks. These practicalities have been rarely investigated. This article addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators in the context of nursing education. The lessons learnt were synthesised into topics related to (i) technological/physical aspects of the deployment; (ii) multimodal data and interfaces; (iii) the design process; (iv) participation, ethics and privacy; and (v) sustainability of the deployment.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3622784</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-0903-2776</orcidid><orcidid>https://orcid.org/0000-0002-6334-7429</orcidid><orcidid>https://orcid.org/0000-0002-8375-1816</orcidid><orcidid>https://orcid.org/0000-0002-6741-3024</orcidid><orcidid>https://orcid.org/0000-0001-5564-0185</orcidid><orcidid>https://orcid.org/0000-0002-2022-9588</orcidid><orcidid>https://orcid.org/0000-0002-8163-2303</orcidid><orcidid>https://orcid.org/0000-0003-3818-045X</orcidid><orcidid>https://orcid.org/0000-0003-4414-7445</orcidid><orcidid>https://orcid.org/0000-0003-2681-4451</orcidid><orcidid>https://orcid.org/0000-0001-9265-1908</orcidid><orcidid>https://orcid.org/0000-0001-5440-6143</orcidid><orcidid>https://orcid.org/0000-0001-8887-3188</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-0516 |
ispartof | ACM transactions on computer-human interaction, 2023-11, Vol.31 (1), p.1-41, Article 8 |
issn | 1073-0516 1557-7325 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3622784 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Collaborative and social computing systems and tools Empirical studies in ubiquitous and mobile computing Human-centered computing |
title | Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-Wild |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lessons%20Learnt%20from%20a%20Multimodal%20Learning%20Analytics%20Deployment%20In-the-Wild&rft.jtitle=ACM%20transactions%20on%20computer-human%20interaction&rft.au=Martinez-Maldonado,%20Roberto&rft.date=2023-11-29&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=41&rft.pages=1-41&rft.artnum=8&rft.issn=1073-0516&rft.eissn=1557-7325&rft_id=info:doi/10.1145/3622784&rft_dat=%3Cacm_cross%3E3622784%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a277t-6d8ae4de2ead181e68735c93ed029bb7d033d74e8331db4e1e31b2abfb02fb713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |