Loading…

CRS-Que: A User-centric Evaluation Framework for Conversational Recommender Systems

An increasing number of recommendation systems try to enhance the overall user experience by incorporating conversational interaction. However, evaluating conversational recommender systems (CRSs) from the user’s perspective remains elusive. The GUI-based system evaluation criteria may be inadequate...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on recommender systems 2024-03, Vol.2 (1), p.1-34, Article 2
Main Authors: Jin, Yucheng, Chen, Li, Cai, Wanling, Zhao, Xianglin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An increasing number of recommendation systems try to enhance the overall user experience by incorporating conversational interaction. However, evaluating conversational recommender systems (CRSs) from the user’s perspective remains elusive. The GUI-based system evaluation criteria may be inadequate for their conversational counterparts. This article presents our proposed unifying framework, CRS-Que, to evaluate the user experience of CRSs. This new evaluation framework is developed based on ResQue, a popular user-centric evaluation framework for recommender systems. Additionally, it includes user experience metrics of conversation (e.g., understanding, response quality, humanness) under two dimensions of ResQue (i.e., Perceived Qualities and User Beliefs). Following the psychometric modeling method, we validate our framework by evaluating two conversational recommender systems in different scenarios: music exploration and mobile phone purchase. The results of the two studies support the validity and reliability of the constructs in our framework and reveal how conversation constructs and recommendation constructs interact and influence the overall user experience of the CRS. We believe this framework could help researchers conduct standardized user-centric research for conversational recommender systems and provide practitioners with insights into designing and evaluating a CRS from users’ perspectives.
ISSN:2770-6699
2770-6699
DOI:10.1145/3631534